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Abstract—The similarity search over large-scale feature-rich
data(e.g. image, video or text) is a fundamental problem and
has become increasingly important in data mining research.
Hashing based methods, especially Locality Sensitive Hash-
ing(LSH), have been widely used for fast Approximate Nearest
Neighbor search(ANNs). Various hash families, distribution
schemes and space efficient search strategies have been pro-
posed during the last decade. However, there are still two
flaws in existing methods: (1) The state-of-the-art distribution
scheme sacrificed too much accuracy for speeding up the query
in practice. (2) Most LSH-based index approaches directly
used the static number of compound hash values without
considering the data distribution, resulting in system perfor-
mance degradation. In this paper, a distribution-aware index
structure called Dynamic Partition Forest(DPF) is designed to
dynamize the used bits of hash values, which leads itself to
auto-adapt various data distributions and incremental data.
To improve the performance, a multiple-step search strategy
is integrated with DPF to mitigate the accuracy loss with
distributed scheme. The experiment results show that DPF
increases the accuracy by 3% to 5% within the same timeframe
compared to DPF without multiple-step search. Additionally,
DPF with our partition scheme is 1.4 times faster than DPF
without partition, which demonstrates the efficiency of our
content-based distributed scheme. Experimental comparisons
with other two state-of-the-art methods on three popular
datasets show that DPF is 3.2 to 9 times faster to achieve
the same accuracy with 17% to 78% decrease of index space.

Keywords-content-based retrieval, distributed search strat-
egy, index structure

I. INTRODUCTION

The volume, velocity, variety, value and veracity of data
make it very challenging to conduct big data analysis. Simi-
larity search is the core technology to many applications(e.g.
content-based image retrieval [1], recommendation system
[2], semantic document retrieval [3]). Generally, data objects
are represented as high dimensional points and similarity
search problem is usually formulated as the k nearest
neighbor search(KNNs) problem: given a set of query points
Q and a set of data points D, it returns k closest points of
D to each query q ∈ Q under the distance function d(·, ·).
A straightforward way for KNNs is linearly comparing the
query with each point in D. The complexity of this approach

is O(dn), where d is the dimension and n is the number of
points in D. This approach is clearly not applicable to large-
scale data with high dimensionality. Precursive methods
like KD tree [4] and Ball tree [5], perform well in low
dimensionality(i.e. less than 20). When the dimensionality is
over 20, these tree-based methods all suffer from the curse
of dimensionality [6], where query performance declines
exponentially with the increasing number of dimensionality.

To break this curse, the approximate nearest neighbor
search(ANNs) has been proposed, which aims to increase
efficiency by sacrificing accuracy. Various classes of algo-
rithms are proposed to solve the ANNs problem. One of
them is Permutation Indexes(PI) [7], which is an efficient
algorithm to predict the similarity between objects. By
introducing a distinguished set of pivots, each object can
be represented by a permutation defined by the ranked
distance towards these pivots. Thus, the distance between
the objects now is described by the distance between their
permutations. However, PI is a non-distributed algorithm [8]
because the distance calculation to all the pivots has to be
computed at once. Another algorithm is Navigable Small
World Graphs(NSWG) [8]. Its basic concept resides on ”The
neighbor of my neighbor is also to be my neighbor”. The
transitive relation between any two nodes on a navigable
small world network is of polylogarithmic time complexity,
which makes it suitable for ANNs problem. The restriction
of NSWG is that the query points should be inserted in
the graph before search, which is, however, a resource-
consuming operation. Besides these two methods, hashing-
based methods like Locality Sensitive Hashing(LSH) [9],
are also good candidates. The basic idea of LSH is using
the distance-preserving hash functions to project the high
dimensional object into a hash code space, and similar points
in the original feature space should be hashed into close
points in the hashcode space, results in pruning the search
space to accelerate the query speed.

Over the last decade, hashing-based index methods have
been improved in the following aspects: (1) Distributed De-
sign: to make the methods applicable for large-scale data, the
state-of-the-art distribution scheme called Distributed LSH



[10] uses layered-LSH to content-based partition the data
into a large number of small partitions. However, in practice,
we find that the accuracy decreases dramatically with the
number of partitions increasing. A very detailed explanation
of this phenomenon is presented in Section II-C. (2) Index
Structure: E2LSH [9], [11] uses a conventional hash to
map the hash values into linear index. Locality Sensitive B-
tree(LSB) [12] transfers the hash values into Z-order values
to build a B-tree structure index. LSH Forest [13] is a tree-
based generation of LSH, where heavily load hash buck-
ets are recursively partitioned with embedded hash tables.
SKLSH [14] defines a new distance measure of hash values,
and sort them to build a B+-tree. However, none of these
index structures uses dynamic number of hash functions and
considers data distribution with incremental data, resulting in
performance degradation. (3) Space Efficiency: Multi-probes
LSH [15] is proposed to generate high quality ”perturbed”
query based on the hash values, which not only reduces the
memory usage of index, but also achieves high accuracy.
(4) Hash Families: P-stable hash family [9] is designed for
`p norm, where p ∈ (0, 2]. Sign Random Projection(SRP)
hash family [16] is used for cosine distance. Orthogonal hash
family [17] improves the SRP by using the orthogonal basis
to do the projection. (5) Data dependent hashing: the hash
functions are learned from data, like Isotropic Hash [18], it
is try to learn an orthogonal matrix to rotate the principal
component analyis(PCA) projection matrix which has the
equal variances for different dimensions.

Owning to the difficulty to pre-analyze the distribution
of incremental data, almost all of LSH-based methods have
applied the static number of compound hash functions.
However, static number of compound hash functions is likely
to impact the performance if the data is not uniformly
distributed. As shown in Figure 1, the data has two main
clusters: cluster 1 and cluster 2. The points in cluster 1
is denser than cluster 2. The dashed line is hyperplane
h, which represents a hash function. For querying the top
5 nearest neighbors of the green point in cluster 1, it is
crucial to add the hyperplane h, because high resolution
is required to exclude irrelevant red points. However, for
querying the top 5 nearest neighbors of green point in cluster
2, the hyperplane h is not necessary because it does not
need hyperplane h to differentiate good candidates(i.e. red
points in cluster 2). Reflected to LSH, whether we can
use the dynamic number of hash functions to distinguish
unpredictable distribution of incremental data is important
to improve the system performance. Here, we present a
summary of our contributions in this paper:

1. Mitigate the Accuracy Loss after Distributed LSH.
We find the accuracy loss after implementing dis-
tributed LSH scheme. By exploring the ground truth
distribution over different partitions, we discover that
only part of partitions is likely to contain the mistakenly

Cluster 1 Cluster 2

h

Figure 1: The dilemma of static number of compound hash
functions.

partitioned similar objects to query. Thus, we design a
hierarchical ∆-step search strategy on partition search
with detailed proof to mitigate the accuracy loss in
minimum time. The results show that 1-step search
strategy with a large number of partitions can signifi-
cantly improve the accuracy of ANNs.

2. Dynamic Bits Extension with Collision Overflow
Design. We take the data distribution into account and
design an index structure for binary hash code called
Dynamic Partition Forest(DPF). The threshold overflow
design helps DPF automatically change the involved
bits of hash values in constructing it in a suitable way
for incremental data. With this design, DPF intelligently
eliminates irrelevant points and includes good candi-
dates to improve the system performance.

3. Practical Implementation and Comprehensive Ex-
periments. We have implemented our method to eval-
uate the efficiency of the hierarchical ∆-step search
strategy and DPF. Three widely used datasets are uti-
lized to examine the practical performance of DPF. The
results demonstrate 3% to 5% accuracy improvements
through 1-step search strategy. To be more convincing,
our system is 3.2 to 9 times faster to achieve the same
accuracy compared with two state-of-the-art methods,
E2LSH [9] and LSH Forest [13]. What’s more, the
space overhead of DPF is reduced by 17% to 78%.

The rest of this paper is organized as follows. The
quantization, partition step and hierarchical ∆-step search
strategy are described in Section II. Section III presents the
approach to construct the DPF and search algorithm in DPF.
The experiments are illustrated in Section IV. Finally, we
conclude the paper in Section V.

II. QUANTIZATION AND PARTITION

Some frequently used notations in this paper are given in
Table I. The feature-rich data are generally high-dimensional
vectors. As shown in Figure 2, given a set of data objects, the
first component of our method is to quantize these objects
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Figure 2: The flow of quantization and partition process. m = 6, M = 2 and 2M = 4 partitions for distribution.

Table I: Summary of Notations

Notation Description
D = [p1, ..., pn] Dataset consists of n d-dimensional objects
Q = [q1, ...qu] Query dataset

L Number of hash tables
Fs Size of hash family
m Maximum number of hash functions

G(·) = [h1(·), ..., hm(·)] m hash functions in quantization step
K = 〈K1,K2, ....Kn〉 Hash values (i.e. K1=G(p1))

G
′
(·) = [h

′
1(·), ..., h′

M (·)] M hash functions in partition step
K

′
= 〈K′

1,K
′
2, ....K

′
n〉 Partition ID (i.e. K

′
1=G

′
(K1))

∆ The Hamming distance of partition-IDs.
l = {l1, l2, l3, . . . , lmax} The length of d-node in each level
T = {T1, T2, . . . , Tmax} The threshold of k-nodes in each level

into binary hash values. Based on the hash values, the second
component is a content-based partition approach to make
the system distributed for large-scale data. The quantization
step for generating hash functions is described in detail as
follows.

A. Generating Hash Functions for Quantization

As shown in Definition 1, LSH has the property that close
objects in high-dimensional space will collide with a higher
possibility than distant ones.

Definition 1: Locality Sensitive Hashing. Given a dis-
tance R, a dataset D, an approximate ratio c and two
probability values P1 and P2, a hash function h : Rd → Z
is called (R, c, P1, P2)-sensitive if it satisfies the following
conditions simultaneously for any two points p1, p2 ∈ D :
• If ‖ p1, p2 ‖s≤ R, then Pr[h(p1) = h(p2)] ≥ P1;
• If ‖ p1, p2 ‖s≥ cR, then Pr[h(p1) = h(p2)] ≤ P2;
Here, both c > 1 and P1 > P2 hold. To define

the maximum distinguishing capacity, we apply a com-
pound LSH function denoted as G = [h1, h2, . . . , hm],
where h1, h2, . . . , hm are randomly picked hash functions
from a designed hash family. Specifically, the compound
hash value of a point pi under G is Ki = G(pi) =
[h1(pi), h2(pi), . . . , hm(pi)]. For simplicity, we call the
compound hash values as hash values in the rest of the paper.

The hash functions G is the key in quantization step.
We aim to map the D = [p1, p2, . . . , pn]T ∈ Rn×d

to a hashcode space to get the compact representations
K = [K1,K2, . . . ,Kn]T ∈ Rn×m. We denote G =
[h1, h2, . . . , hm] ∈ Rd×m. In this paper, we first initialize
the orthogonal angle hash family, as shown in Definition 2.

Definition 2: Orthogonal angle hash family. In a d
dimensional data space, given an input vector p and an
orthogonal projection vector a, we define the hash functions
as h(p) = sign(p · a).

The function sign(z) = 1 if z ≥ 0 and 0 otherwise. It
means our method uses one bit to quantize each projected
dimension. When m hash functions are used, our method
actually projects the original feature space into 2m parts.
More specifically, Ki = 01001 . . . 001︸ ︷︷ ︸

m

. The way to generate

orthogonal angle hash functions for each hash table is data
independent, which causes hashing-based method requires
numerous hash tables for high accuracy in practice. To
minimize quantization loss as much as possible, we find that
the closer sign(z) and z are, the better the locality property
of the projected data will be preserved [19], [20], which can
be formulated as the following optimization problem:

min
zi

n∑
i=1

‖ sign(zi)− zi ‖

Our method uses an iterative optimization method proposed
in [19], [21]. Algorithm 1 shows the detailed quantiza-
tion step for one hash table. However, the optimization
method requires a pair-wised similarity matrix of the data.
It consumes both computation overhead and memory space
overhead when the data size is large(e.g. 1M dataset need
1M× 1M similarity matrix). Thus, in the experiment, we
only apply the optimization method for Fashion-MNIST [22]
dataset.

B. Distributed through Content-based Partition

For large-scale data, there are two challenges need to be
considered. (1) Single machine doesn’t have enough memory
space for the whole index. Thus, a distributed scheme
is required to partition our data into smaller partitions.
However, if we directly divide the data into partitions like
[23], the system needs to parallelly search all partitions



Algorithm 1: Quantization(d, Fs, Inum, m, D)
Input: Dimension d; Hash family size Fs(Fs ≤ d); Number

of Iteration Inum; Number of hash functions m; Data
set D;

Output: Hash values K;
1 O = ∅, G = ∅, K = ∅;
2 Generate a random matrix H with each element x being

sampled independently from the normal distribution
N (0, 1). Denote H = [xi,j ]d×d;

3 Compute the QR decomposition of H , such that H = Q ·R;
4 Get the first Fs column of Q into O as orthogonal hash

family;
5 Randomly pick m hash functions from O to G;
6 Calculate the pair-wised similarity matrix A

Ai,j =

{
1 if pi ∈ Nk(pj) or pj ∈ Nk(pi)
0 otherwise

where Nk(p) denotes the k-nearest neighbors of p;
7 Optimize the hash functions G as follows;
8 F = diag(A · I);
9 L = F −A;

10 for i = 1; i ≤ Inum do
11 K = sign(D ·G);
12 G = DT · L ·D ·G + DT ·D ·G−DT ·K;
13 M = G ·GT −G ·GT ;
14 Q = (I + 1

2
M)−1(I − 1

2
M);

15 G = Q ·G;

16 K = sign(D ·G);
17 return K;

for each query, which involves network overhead. (2) An-
other challenge is how to make sure that each query only
needs to access a single machine. It means the objects are
required to be similar with each other within a partition.
Our content-based partition strategy used an idea which is
similar to Layered LSH [10], the difference is we use the
orthogonal hash family, while Layered LSH uses the P-
stable hash family. Specifically, another set of hash functions
G

′
= [h

′
1, h

′
2, . . . , h

′
M ] ∈ Rm×M are used. As we can see

in Fig. 2, for each hash value Ki, the result K
′
i is an M

long binary hash value, which indicates the partition-ID that
the object belongs to. The principle of our content-based
partition approach resides here:

1) Similar objects have high possibility to have the similar
hash values after quantization.

2) Similar hash values have high possibility to have the
similar hash values(partition-ID).

Algorithm 2 illustrates the content-based partition step for
one hash table. Through this, there is no overhead network
delay between the work nodes of the system, which improves
the network efficiency. The parameters M influences the
concurrency handling capacity of the system. Specifically,
2M partitions are generated.

Algorithm 2: Partition(K, G
′
)

Input: Hash values K; Hash functions G
′
;

Output: Each objects’ partition ID K
′
;

1 K
′

= ∅;
2 Y = sign(K ·G

′
) /*Now Y is a n by M matrix*/ ;

3 for i = 1; i ≤ Y.length do
4 pID = 0;
5 for j = 1; j ≤ Y [i].length do
6 pID = (pID << 1) | Y [i, j];

7 K
′
[i] = pID;

8 return K
′
;

P1

P2

P3

P4

(a) 2-d hashcode example

0 10 20 30 40 50 60 70
Number of Partitions

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

A
cc

u
ra

cy

accuracy

(b) Accuracy loss

Figure 3: An example of accuracy loss after distributed LSH
scheme in 2-d hashcode space and the accuracy loss plot with the
increasing number of partitions. Blue point is the query and red
points represent good candidates. P1, P2, P3, P4 are four partitions.

C. Mitigate Accuracy Loss by ∆-step Search Strategy

The ideal partition strategy is dividing all the similar
objects into one partition. However, due to the approximate
property of LSH, we find the similar objects are still
likely to be divided into different partitions, which results
in performance degradation. As shown in Fig. 3(a), after
applying the partition step, the query point falls into P2. The
traditional search strategy only retrieves the similar objects
in P2, results in the loss of good candidates in P1. In Fig.
3(b), after implementing the partition strategy in practice,
the accuracy dramatically declines with the increment of
partitions.

To mitigate the accuracy loss, we need to find out where
the lost good candidates located. In another word, the search
strategy should explore more ”valuable” partitions, which
are most likely to contain the lost good candidates of the
query. Thus, we design a ∆-step search approach based on
another LSH property: the partitions that are one step away
are most likely to contain objects that are close to the query
object than partitions that are two steps away. There are only
two possible values 0 or 1 in each bit of a partition-ID. The
Hamming distance between two partition-IDs is denoted as
∆, and ∆max = M . To prove that the ∆ has an unbiased
estimate of the similarity between the corresponding hash
values, we have Lemma 1 [24](Lemma 3.2) as follows.

Lemma 1: Given a random vector r drawn uniformly
from the unit sphere Sd−1 in Rd, any two vectors vi and vj
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from Sd−1, given hr(v) = sign(v · r), we have

Pr[hr(vi) 6= hr(vj)] =
θvi,vj
π

where θvi,vj = cos−1(
〈vi,vj〉
‖vi‖‖vj‖ ). It reveals the relation

between Hamming distance and angular similarity. Through
the former proof in [17], we further have

Theorem 1: Given M orthorgonal vectors h1, h2, . . . ,
hM from the orthogonal angle hash family, then for any two
normalized binary vectors p, q ∈ Sm−1 after quantization
step, by defining M indicator random variables Xp,q

1 , Xp,q
2 ,

. . . , Xp,q
M as

Xp,q
i =

{
1 hi(p) 6= hi(q)
0 hi(p) = hi(q)

We have E[Xp,q
i ] = Pr[X

p,q
i = 1] = Pr[hi(p) 6= hi(q)] =

θp,q
π , for any 1 ≤ i ≤M .

So the expectation of ∆ is

E[∆] = E[dHamming(h(p), h(q))] = E[

M∑
i=1

Xp,q
i ]

=

M∑
i=1

E[Xp,q
i ] =

M∑
i=1

θp,q/π = Cθp,q

where C = M/π. It explains smaller ∆-step partitions are
more likely to contain the hash values close to the query’s
hash value. To hierarchically generate the ∆-step partitions,
we apply +1(for bit=0) or -1(for bit=1) on the ∆ number
of bits in original partition-ID. The total number of ∆-
step partitions is

(
M
∆

)
. As the example shown in Figure 4,

suppose M = 3, the original sub-index-ID is 010, then the
1-step partition-IDs are 110, 000, 011, the 2-step partition-
IDs are 100, 111, 001, the 3-step partition-IDs is 101.
The Theorem 1 reveals larger ∆ results in more dissimilar
objects. Thus, our hierarchical ∆-step search strategy is to
search the original(0-step) partition first, if the accuracy
is low, then search the 1-step partitions to increase the
accuracy. The comprehensive evaluation of content-based
partition strategy and ∆-step search strategy is in Section
IV.

III. DISTRIBUTION-AWARE INDEX

After quantization and partition steps, each partition con-
sists of a sufficient number of similar objects. An efficient
index structure is required to facilitate the query speed.
However, as we described in Section I, directly using the
static number of bits(hyperplanes) to build index will cause
performance degradation. Our idea is to design an index
structure which can detect high collision area and then dy-
namically use adequate bits of hash values to hierarchically
divide the area. In practice, we set a objects threshold to each
sub-space. When detecting objects overflow, our system then
includes more bits(hyperplanes) to divide the sub-space into
more smaller sub-space.

A. Construction of Dynamic Partition Forest

To meet our requirements, we design a distribution-
aware index structure called dynamic partition forest(DPF),
which consists of multiple dynamic partition trees(DPT).
The structure of DPT is similar to the R-tree which is formed
by hierarchically partitioning the hash values in each sub-
index. The difference is when the tree level goes deeper,
the more bits of hash values are evaluated to determine the
position, which is inspired by [25].

We introduce two types of nodes in DPT: (1) k-node:
contains two fields KEY and POINT , KEY is the
objectID, and POINT keeps the reference to the next k-
node in the same slot. (2) d-node: an array contains l slots,
which is mutable in different levels, and we treat each slot
as a bucket. The value in each slot saves the reference to
the first k-node in the slot or the first d-node in the slot.
In addition, we set a threshold array T for each level to
indicate the maximum number of similar objects under each
slot. The detail steps of inserting a hash value ~ from K
into a DPT are explained as follows:
• Step 1: According to the first log2(llevel) bits of ~,

we generate a Integer range from 0 to llevel − 1 as the
position of level 1. For instance, if l1 = 32, m = 10,
~ = 1001001101, and log2(l1) = 5. Then first 5 bits
extracted from ~ is (10010)b = 18 to determine the
slot in root level of the DPT.

• Step 2: If the slot has not been occupied, we update
the value in the corresponding slot of the root node as
the address of object whose hash value is ~ in storage
space and terminate the insert process. The Insert k1
and Insert k4 in Figure 5 shows this step.

• Step 3: If the slot has been occupied, and the corre-
sponding node is d-node, we do level = level+1, then
progressively use the next log2(llevel) bits of ~ as the
slot in the current level d-node, then go back to Step
2.

• Step 4: If the slot has been occupied, and the corre-
sponding node is k-node, also the number of objects
under this slot is equal or less than T [level], we insert
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Figure 5: Example of DPT construction. Here, T = {3, 2, ...} and l = {128, 64, . . . }. The decimal representation of hash
values are k1 = {26, 7, ...}, k2 = {26, 4, ...}, k3 = {26, 7 , ...}, k4 = {1, 4, ...}, k5 = {26, 4, ...}. In left part, shirts are
more similar in deep fine-level than the shallow coarse level.

~ under this slot, then terminate, as Insert k2 and Insert
k3 shown in Figure 5. If the number of objects under
this slot is larger than T [level], we add a new d-node
under this slot, then go to Step 5.

• Step 5: level = level + 1, we progressively use next
log2(llevel) bits of ~ as the slot in the new d-node, and
redistribute the k-nodes under the former slot in this
new d-node, as Insert k5 describes in figure 5. If the
number of objects in the new d-node under one slot is
still larger than T [level], we do Step 5 repeatedly until
less than T [level] or reaching to the max level, then
terminate. So, it means at the max level, there is no T
limitation.

By following the above steps, the pseudocode of DPF con-
struction for one hash table is shown in Algorithm 3. Each
hash table contains 2M DPT in total to make up the DPF.
Compared with traditional index structure, the advantages
of DPF reside in three points: (1) The length of used bits
to build index is dependent on data distribution. When the
collision of similar objects overflows in a slot, DPF will hier-
archically partition similar objects into next levels to achieve
higher differentiation ability. As depicted in the left part of
Figure 5, images are classified from shallow coarse-level
to deep fine-level with increasing differentiation. (2) The
threshold T determines the discrimination ability of DPT.
A large threshold in deep level enlarges the search range
which requires more candidates to be evaluated, leading to
computation overhead. A small threshold in shallow level
may exclude too many objects while it increases the false
negative rate. By decreasing the threshold from shallow level
to deep level, our method not only decreases the computation
overhead but also reduces the false negative rate. (3) The
parameter l has the opposite effect against T . By setting
l variable in different level, DPT captures enough good
candidates even for incremental data.

B. Approximate Nearest Neighbor Query

The ANN query operation is as follows:

• Calculate query’s hash value and partition-ID: The
operation is the same as the quantization step.

Algorithm 3: Index(K, K
′
, l, T )

Input: Hash values K, Partition-ID K
′
, Length of d-node in

each level l = l1, l2, . . . , lmax, Threshold array T
Output: Index I

1 I = initialize 2M number of empty DPT;
2 max = l.length;
3 mask = Array(l1 − 1, l2 − 1,. . . , lmax − 1);
4 for i = 0; i < K.length do
5 curDPT = I[K

′
[i]];

6 level = 1;
7 while true do

8 slot = (K[i] >>> (m−
level∑
w=1

log2(lw))) &

mask[level]);
9 (valueInSlot, nodeType) = curDPT.find(slot, level);

10 if valueInSlot is 0(empty) then
11 curDPT.addKNode(i, level, slot);
12 break;

13 else
14 if nodeType is d-node then
15 level = level + 1;
16 continue;

17 else
18 collideNum = curDPT.addKNode(i, level,

slot);
19 if collideNum > T [level] and level < max

then
20 curDPT.addDNode(slot, level);
21 curDPT.redistributeObjects(slot, level);

22 break;

23 return I;

• Calculate ∆-step partition-IDs: The choice of ∆
leverages the ANN query’s accuracy and efficiency. The
way to calculate ∆-step partition-IDs is described in
Section II-C.

• Cenerate probes of query: To achieve index space
efficiency and make the best use of DPT. We integrate
our search algorithm with Multi-probes LSH search
strategy [15], which not only considers the main slot



where the query falls but also the slots that are ”close”
to the main slot.

• Search the DPT: the search algorithm starts from
the root level, then move down to deeper level and
terminate until reaching a slot containing k-nodes.

Algorithm 4 shows the details of query operation in one hash
table.

Algorithm 4: Search(q, I, G, G
′
, ∆, l)

Input: Query q; Index I; Quantization hash functions G;
Partition hash functions G

′
; ∆-step search; Length of

d-node in each level l = l1, l2, . . . , lmax;
Output: Result R

1 R = ∅, Kq = sign(q ·G), K
′
q = Partition(Kq , G′);

2 max = l.length;
3 mask = Array(l1 − 1, l2 − 1,. . . , lmax − 1);
4 multiProbes = GenerateMultiProbes(Kq);
5 ∆-Partitions = GenerateDeltaPartitions(K

′
q , ∆);

6 for i = 0; i < ∆-Partitions.length do
7 curDPT = I[∆-Partitions[i]];
8 for j = 0; j < multiProbes.length do
9 level = 1;

10 curR = ∅;
11 probes = multiProbes[j];
12 while true do

13 slot = (probes >>> (m−
level∑
w=1

log2(lw))) &

mask(level);
14 (valueInSlot, nodeType) = curDPT.find(slot,

level);
15 if valueInSlot is 0(empty) then
16 R.add(curR);
17 break;

18 else
19 if nodeType is d-node then
20 level = level + 1;
21 continue;

22 else
23 /*If it is k-node, retrieve the all k-nodes

under this slot*/;
24 curR = curDPT.getKnodes(level, slot);
25 R.add(curR);
26 break;

27 return R;

IV. EXPERIMENT

A. Setup and Dataset

We implement our method on a Linux Intel(R) Xeon(R)
server(2.20GHz, 32.0GB memory) and evaluate the perfor-
mance by using three widely used datasets for ANNs as
follows: Fashion-MNIST [22] It is a dataset of Zalando’s
article images consists of 60,000 examples. Each example
is a 784-dimensional vector. Compared to MNIST [26],
Fashion-MNIST is more difficult because the images are

more complicated. SIFT [27] It is an images dataset contains
1M objects. Each data object is a 128-dimensional SIFT
feature which is extracted from Caltech-256 by using open
source VLFeat library. GloVe [28] It consists of 1.2M 100-
dimensional word embedding in vector space trained from
tweets. For each dataset, we sample a subset of 1000 data
objects as query set.

B. Evaluation Protocols

• Recall is widely used to evaluate the accuracy of the
return objects in many ANNs work [8], [29]. Given a
query q, let R∗ = {o∗1, o∗2, o∗3 . . . , o∗k} be the ground
truth of top k nearest neighbors to q, our method also
returns k objects R = {o1, o2, o3 . . . , ok}. Both results
are ranked by the increasing order of their distance to q.
The recall with repect to q is computed as recall(q) =
|R∗⋂R|/|R∗|.

• Time mainly consists of two parts: 1) The searching
time in each DPT to find the closest objects to the query
objects; 2) The calculating time to verify all candidates
to get top k nearest neighbors. We use it to evaluate
the time performance of our method.

C. Performance of Partition Strategy

To see whether our content-based partition strategy can
efficiently divide the similar objects into one partition.
We analyze the distribution of top k ground truth nearest
neighbors in different ∆-step partitions. Given a query q, we
first calculate the q’s original partition-ID. Then we follow
the approach in Section II-C to generate q’s different ∆-
step partitions. We also calculate q’s top k ground truth
nearest neighbors’ partition-ID to see where these ground
truth nearest neighbors fall into. Since each query’s top
k nearest neighbors will fall into different partitions, we
sample 1000 queries and get the average distribution. As
shown in the Figure 6, when M = 2, 92% to 97% of the
top k nearest neighbors are partitioned into the original(0-
step) partition even with the increment of k. When M
rises, the top k nearest neighbors are lightly decentralized
into different step partitions, but the original partition still
maintains a high percentage around 90%, which proves the
efficiency of content-based partition strategy used in this
paper. In the meanwhile, we find the missing top k nearest
neighbors are always in 1-step partitions, it is the reason why
we adopt the 1-step search approach to improve the accuracy.
When M reaches to 5 and 6, the percentage in original
partition drop to 77% to 81% for all of three datasets, which
causes the accuracy loss dramatically. However, the 1-step
partitions still contain the most part of the missing top k
nearest neighbors. In Figure 6(d),(e) on Fashion-MNIST, the
2-step partitions contains more top k nearest neighbor than
Glove and SIFT, it is because the data of Fashion-MNIST
is denser than other two datasets.
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Figure 6: Top k ground truth distribution in different ∆-step partitions.

Table II: Different ∆-step search performance with different M . The ∆ means the depth of searched partitions. For example,
∆ = 1 means it searches the 0-step partitions and 1-step partitions.

M=2 M=3 M=4 M=5 M=6
∆ 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4 5 6

Glove recall 0.87 0.93 0.94 0.84 0.91 0.94 0.95 0.78 0.91 0.93 0.94 0.94 0.76 0.90 0.92 0.93 0.93 0.93 0.72 0.89 0.91 0.92 0.93 0.93 0.93
time(ms) 32.1 52.1 55.8 27.4 38.8 47.3 48.6 23.8 34.2 52.1 55.6 58.9 20.2 30.1 52.8 69.7 75.3 76.4 17.6 26.8 52.7 73.9 82.4 86.3 87.8

Fashion-
MNIST

recall 0.88 0.92 0.93 0.84 0.90 0.92 0.92 0.82 0.89 0.93 0.93 0.93 0.80 0.88 0.89 0.90 0.92 0.92 0.78 0.89 0.90 0.92 0.92 0.93 0.93
time(ms) 56.1 67.4 68.9 47.3 59.8 68.3 69.7 37.8 53.6 73.7 80.7 81.9 33.4 55.7 78.2 82.7 85.1 85.9 31.2 57.3 68.5 81.2 88.5 93.1 96.4

SIFT recall 0.85 0.91 0.92 0.79 0.89 0.89 0.90 0.75 0.88 0.91 0.91 0.91 0.67 0.86 0.89 0.90 0.90 0.90 0.65 0.85 0.90 0.91 0.91 0.91 0.91
time(ms) 19.4 24.1 26.1 14.7 20.3 23.6 25.0 11.2 19.7 33.9 34.8 35.2 9.8 22.2 44.3 49.2 50.7 51.2 9.7 21.6 45.1 55.5 61.2 63.7 64.1

D. Performance of ∆-step Search Strategy

From the previous analysis of ground truth k nearest
neighbor distribution in Section IV-C, we learned that
similar objects are still likely to be divided into different
partitions. However, the original(0-step) partition keeps the
highest rate of top k similar objects, and the 1-step par-
titions keep the second. To examine the different ∆-step
search performance, we use the average query time and
average recall to measure the efficiency and accuracy. We
fix the parameters L = 10, T = {1000, 800, 600, 400}
and l = {128, 128, 128, 128} for SIFT, L = 15, Th =
{1000, 800, 600, 400} and l = {128, 128, 128, 128} for
Glove, L = 25 Th = {200, 150, 100, 50} and l =
{128, 128, 128, 128} for Fashion-MNIST. As the ∆max =
M , we do experiments on various M and evaluate all
possible ∆-step searches. The results are shown in Table
II, we learned that (1) The 0-step search costs the shortest
time with the lowest recall for different M on three datasets.
The reason is that 0-step search only explores one partition,
which roughly contains 100/2M% data. The 0-step search
loses more accuracy with larger M , which is called accuracy
loss phenomenon discussed in Section II-C. (2) Under the
same M , with the increment of ∆, the recall and query
time rise together as a result of searching more partitions.
In addition, increasing ∆ from 0 to 1 gains the recall most,
which verifies the conclusion that 1-step partitions contain

most of the similar objects as we tested in Section IV-C.
(3) More partitions are created by increasing M . Thus,
most of the time, more query time is required in large M
compared to small M even to achieve the same recall. While
∆ = 1 is always the best trade-off. The best performance
combinations are emphasized with bold font. For example,
on Glove, When M = 6, we achieve recall = 0.89 with
26.8ms query time by doing 1-step search. Compared to the
0-step search, it mitigates the accuracy loss by increasing
the recall from 0.72 to 0.89. In the meanwhile, the query
time is relatively small compared with M = 2 and ∆ = 0
on Glove. (4) The performance of three datasets is improved
by applying the 1-step search. In conclusion, if the system
is more inclined to query speed, the 0-step search is fine.
While the system considers a relatively high accuracy, 1-step
search is strongly recommended. Besides, one of the main
problems affecting the performance of LSH-based methods
is limitation of hash tables, which is also the reason why we
apply Multi-probes search strategy [15] on DPF, as discussed
in Section III-B. As we can see in Figure 8, to achieve the
same recall = 0.9, the number of searched DPT is reduced
around 68% by using Multi-probes search.

E. Compared with Other Methods

To demonstrate the effectiveness of the proposed approach
in this paper, we use the recall-time curve to measure the
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Figure 7: Top 10 ANNs results of 1000 queries on three datasets. We k = 10. Low and to the right is better.
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Figure 8: Impact of Multi-probes on Glove dataset

performance. Our method is compared with the following
two state-of-the-art LSH-based methods. E2LSH [9] uses
a conventional hash to map the hash values into linear
index. We use 16-bit hash values for Fashion-MNIST and
20-bit for Glove and SIFT. LSH Forest [13] is a tree-
based generation of LSH, where heavily loaded hash buckets
are recursively partitioned with embedded hash tables. It
uses 32-bit hash values of fixed length and applies SRP
hash family to approximate the cosine distance. Dynamic
Partitioned Forest(DPF) is the method proposed in this
paper. We test the DPF with and without partitioning.
Furthermore, integrated with the ∆ search strategy, we test
∆ = 0 and ∆ = 1 with M = 4 for all three datasets.

The recall-time curves of these methods are shown in Fig-
ure 7. Several interesting conclusions are drawn as follows:

1) In SIFT and Glove datasets, DPF outperforms the other
two methods. In SIFT dataset, the query speed of DPF
1-step reaching the recall = 0.8 is 6.5 times faster than
LSH Forest, and 7.5 times faster than E2LSH. In Glove
dataset, the query speed of DPF 1-step reaching the
recall = 0.8 is 3.2 times faster than LSH Forest, and 9
times faster than E2LSH.

2) In SIFT dataset, DPF 0-step is the fastest way to get
the top 10 NN. However, using the same index space,

Table III: The maximum number of L.

SIFT Glove Fashion-MNIST
E2LSH 20 40 80

LSH Forest 46 30 50
DPF 10 25 20

the maximum recall it can achieve is 0.77, while the
recalls of DPF 1-step and DPF without partition can
achieve over 0.9. In addition, DPF 1-step is 1.4 times
faster than DPF without partition and 0.75 times slower
than DPF 0-step with the same M . This finding is also
presented in both Glove and Fashion-MNIST datasets.

3) In Glove dataset, using the same index space, the
maximum recall DPF 0-step can achieve is 0.9, which
is higher than SIFT and Fashion-MNIST datasets.

4) In Fashion-MNIST dataset, E2LSH performs the best
before recall reaches 0.75, but then falls behind LSH
Forest and DPF 1-step.

5) The Table III shows the space overhead in our ex-
periments. The large L is, the more hash tables are
created. Compared with E2LSH and LSH Forest, DPF
significantly decreases 17% to 78% space overhead.

Overall, DPF dramatically improves the performance of
ANNs in SIFT and Glove datasets. In Fashion-MNIST
dataset, DPF also performs positively.

V. CONCLUSION

In this paper, we propose an efficient and distributed
indexing scheme to support similarity search over large-scale
data. We point out two flaws (dramatically accuracy loss af-
ter distributed scheme and performance degradation by using
static number of bits to construct index) in existing methods.
In order to solve them, we propose a hierarchical ∆-step
search approach to mitigate the accuracy loss after applying
distributed scheme. A distribution-aware index structure
called dynamic partition forest is designed to dynamically
used the bits(hyperplanes) to partition high collision space.



Compared with other two methods, experimental results
demonstrate the efficiency and accuracy of our method.
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