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MixNN: Combating Noisy Labels in Deep Learning
by Mixing with Nearest Neighbours

Yangdi Lu, Wenbo He

Abstract—Noisy labels are ubiquitous in real-world datasets,
especially in the ones derived from crowdsourcing and web
searching. It is challenging to train deep neural networks with
noisy datasets since the networks have been shown to overfit
the noisy labels during training, resulting in poor performance.
During a “early learning” phase, deep neural networks were ob-
served to fit the clean samples before memorizing the mislabeled
samples. In this paper, we dig deeper into the representation
distributions in the early learning phase and discover that,
regardless of their noisy labels, representations of samples from
the same classes still congregate together. Inspired by these
findings, we propose an algorithm to mitigate the impact of noisy
labels. Rather than using existing approaches to identify and
remove the mislabeled samples, we propose a weighted mixing
strategy to create new synthetic samples by combining original
samples with their nearest neighbours, wherein the weights
are calculated using a mixture model learning from the per-
sample loss distribution. To enhance the performance in the
presence of extreme label noise, we propose to estimate the soft
targets by gradually correcting the noisy labels. Our intriguing
analyses demonstrate that the estimated soft targets yield a more
accurate approximation to ground truth labels and the proposed
method produces a superior quality of learned representations
with more separated and clearly bounded clusters. The extensive
experiments in two benchmarks and two challenging real-world
datasets demonstrate that our approach outperforms the existing
state-of-the-art methods.

Index Terms—Label Noise, Image Classification, Deep Learn-
ing

I. INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable
performance in a variety of applications (e.g. image classifi-
cation [1] and object detection [2]). Despite the use of novel
network architectures and efficient optimization algorithms,
large-scale training data is always required for these supervised
tasks. However, obtaining such high-quality training data with
human-annotated labels is extremely expensive and time-
consuming in practice. Some non-expert sources, such as
Amazon’s Mechanical Turk 1 and online searching engines,
have been widely used to lower the high labeling cost. How-
ever, due to the limited knowledge and inadvertent mistakes,
crowdsourced annotators cannot annotate specific tasks with
100% accuracy, resulting in introducing noisy labels. Even the
most celebrated and highly-curated datasets, such as ImageNet
[3], are famously containing noisy labels.

Unlike traditional supervised learning, which assumes that
all label information is correct, we consider the training data
contains a certain percentage of samples with incorrect labels.
Training DNNs on such unreliable datasets is known to be

1https://www.mturk.com/
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Fig. 1: A synthetic training sample is created by mixing itself
with its nearest neighbours based on the learned representa-
tions.

highly affected as the significant number of model parameters
render DNNs even overfit to noisy labels [4]. Zhang et al.
[5] have empirically demonstrated that DNNs can easily fit an
entire training dataset with any percentage of corrupted labels,
and result in poor generalization capacity on a clean test set.
Zhu et al. [6] have observed that the performance drop caused
by label noise is more substantial than by other noises, such
as feature noise. Therefore, it is crucial to develop learning
algorithms that achieve superior generalization capability in
the presence of noisy labels.

Given a training set consisting of clean samples and mis-
labeled samples, a common approach to mitigate the negative
impact of noisy labels is to detect the mislabeled samples and
eliminate them in the first stage, then train a new classifier
with the remaining clean samples in the second stage [7]–
[9]. However, the first stage’s filter mechanism for distin-
guishing the mislabeled samples from the others is critical
to the second stage’s classification performance. Assume the
filtering mechanism only removes a few mislabeled samples,
the unfiltered mislabeled samples still affect the (supervised)
loss and deteriorate the classification performance. On the
other hand, if too many samples, including clean samples,
are eliminated, the remaining data may not be rich enough
to generalize to held-out data effectively in the second stage.
Therefore, is it possible to robustly train DNNs on noisy data
without discording the informative training samples?

In this paper, we propose an algorithm for combating the
negative influence of noisy labels. Our main idea is to generate
new synthetic samples that effectively hide the information
from the noisy labels, allowing robustly training the DNNs.
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Specifically, for each training sample, we search its K nearest
neighbours based on the learned representations. Then we
linearly combine the samples with their nearest neighbours in
terms of their images and labels to create synthetic samples.
By training DNNs with the synthetic samples, our approach
mitigates the noisy supervision caused by mislabeled samples
and enhances the task performance. Take the case in Fig. 1
as an example – Suppose we simply average the three images
and their labels, then the new image is a mixed dog image
and the new label is a smoothed label with the probability of
2/3 for dog class and 1/3 for cat class. Intuitively, the new
image appears to have a similar effect to the original image
when cutout augmentation is used [10], while the new label is
similar to applying label smoothing [11] on the original one-
hot label. It is clear to observe that training DNNs with the
synthetic samples is more reasonable than train them with the
original ones (e.g. a dog image with a wrong label cat).

Instead of simply averaging the samples with its nearest
neighbours, we assign dynamic weights to these selected
samples and convexly combine them to generate the synthetic
samples. Ideally, the weights for clean samples should be large
to preserve the correct information while small for mislabeled
samples to suppress the wrong supervision. Previous work
[12] has observed that DNNs learn the clean pattern before
memorizing the complex noisy pattern during training. Specif-
ically, DNNs learn from clean samples at ease and receive
inconsistent error supervision from the wrong samples before
over-fitting to the entire dataset. Therefore, the predictions and
given labels are likely to be consistent on clean samples and
inconsistent on wrong samples, resulting in the separation of
their loss values in the early learning phase. Based on this
observation, we propose to estimate the weights by fitting
a two-component Gaussian Mixture Model [13] to the per-
sample loss distribution and calculate the posterior probability
of the loss value to measure whether a sample is clean or not,
allowing the mixing strategy to be dynamic.

To enhance the robustness of our approach, we propose
an exponential moving average strategy to estimate targets
distribution based on model predictions and given noisy labels.
The hard noisy labels are substituted with soft targets, which
has been proven to effectively improve the generalization in
knowledge distillation [14]. In our scenario, the label quality
is improved as the wrong labels can be gradually corrected.
Subsequently, the performance of dynamic weight estimation
becomes more accurate, providing a more stable supervisory
signal in the training procedure.

In summary, our learning framework leverages the mixed
samples to prevent the DNNs from overfitting to noisy labels
and improve generalization performance. Our main contribu-
tions are summarized as follows:
• We provide insights into the memorization procedure and

representation distributions of learning with noisy labels.
Based on these findings, we propose to generate synthetic
training samples to robustly train DNNs, by mixing the
original samples with their nearest neighbours.

• We propose to use the dynamic weights for supporting the
creation of mixed samples. The weights are proportional
to the clean probability of samples, thereby maintaining

correct information while eliminating the wrong informa-
tion in the mixed samples.

• We propose an exponential moving average strategy to
gradually estimate the soft targets, yields enhancing the
performance in the presence of extreme label noise.

• We demonstrate that the proposed method outperforms
the state-of-the-art methods on two standard benchmarks
with simulated label noise and two real-world noisy
datasets. We also provide ablation study and empirical
analyses (e.g. gradient analysis and feature representa-
tions) to verify the effectiveness of different components.

Besides, our method does not require any prior knowledge of
the type or the amount of label noise. It does not require any
tuning of hyperparameters based on prior knowledge, making
our method applicable to real life.

The remainder of this paper is organized as follows: Section
II introduces the related work on classification with noisy
labels. Section III explores the early learning phenomenon and
explains the failure of using cross-entropy loss when learning
with noisy labels. Section IV describes each part of our
method with detailed explanations. In Section V, we conduct
a case study towards a better understanding of our approach
and discuss the possible limitations. Section VI details the
experiments including a comparison with other state-of-art
methods and several analyses. Finally, we conclude the paper
in Section VII.

II. RELATED WORK

Different approaches have been proposed to combating
noisy labels in classification task, and they can be classified
into the following categories:
Robust loss functions. These studies [15]–[22] focus on
developing noise-tolerant loss functions . For example, Ghosh
et al. [18] have proven mean absolute error (MAE) is a
noise-tolerant loss function, while the performance degrades
when MAE is adopted in deep neural networks [19]. Wang
et al. [20] boost the cross-entropy (CE) loss symmetrically by
adding a reverse cross-entropy loss term to avoid overfitting
to noisy labels. GCE [19] applies a Box-Cox transformation
to probabilities which behaves like a generalized mixture of
MAE and CE. This category of method relies on a specific
noise model, such as symmetric or asymmetric noise model
[23]. Therefore, it only has a minor improvement on the
performance when training DNNs with real-world label noise.
Loss correction and Label correction. These approaches
either iteratively relabel the noisy labels with their own predic-
tions [24]–[26] or estimate the noise transition matrix [23]. For
example, Patrini et al. [23] estimate the noise transition matrix
and equally treat all samples to correct the loss. Joint-optim
[24] iteratively updates the labels with soft or hard pseudo-
labels. PENCIL [26] refines the relabel procedure without
using prior information about noisy labels. Reed et al. [27]
propose a bootstrapping method which corrects the labels by
predictions. D2L [28] improves the bootstrapping method by
exploiting the dimensionality of feature subspaces.
Sample selection by Curriculum Learning These methods
[29]–[35] effectively train DNNs by selecting samples through
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a meaningful order (i.e. from easy samples to the hard ones).
MentorNet [29] pre-trains a mentor network for selecting clean
samples to guide the training of the student network. Co-
teaching [30] and Co-teaching+ [33] symmetrically train two
networks by selecting small-loss instances in a mini-batch
to teach the other. Co-matching [35] uses an unsupervised
matching loss to boost the performance under extreme label
noise through an ensemble manner.
Semi-supervised learning and meta-learning. These meth-
ods either apply semi-supervised learning techniques after
explicitly differentiating noisy samples from training data [8],
[36]–[38] or use meta-learning [39], [40]. For example, Li et
al. [37] divide the training data into clean and noisy ones,
then train two networks with a semi-supervised algorithm
MixMatch [41]. SELF [38] progressively filters out mislabeled
samples with a semi-supervised approach.
Other approaches: Wang et al. [25] apply a Siamese network
with a contrastive loss to iteratively pull noisy samples away
from the clean ones. Vahdat et al. [42] model the relationship
between noisy and clean labels through a Conditional Random
Field. Huang et al. [9] use a heuristic way to adjust the learning
rate to prevent DNNs from overfitting to label noise. Lu et al.
[43] propose a confidence adaptive regularization to prevent
DNNs from memorizing noisy labels. Han et al. [44] use the
clustering algorithm to find multiple prototypes for correcting
noisy labels.

In contrast to the aforementioned literature, our method
trains DNNs on noisy labels without: 1) consulting any
clean subset; 2) eliminating training samples; 3) applying
augmentation techniques from semi-supervised learning; 4)
using any prior information. Specifically, we train DNNs with
a new training set created by combining the original samples
with their nearest neighbours, which prevents DNNs from
overfitting to noisy labels during training.

III. WEAKNESS OF CROSS ENTROPY LOSS

Our goal is to develop an algorithm for training DNNs
classifier that performs well on the clean test set despite the
presence of noisy labels in the training set. Before introducing
our method, we initially describe the preliminary of classifica-
tion with noisy labels. Then we provide some insights to the
memorization procedure of DNNs and analyze the gradient
coefficient to explain the weakness of using cross-entropy loss
when learning with noisy labels.

A. Preliminary
Consider the C-class classification problem, we have a

noisy training set D̂ = {(xi, ŷi)}Ni=1, where xi is an input
and ŷi ∈ {0, 1}C is the one-hot vector corresponding to
xi. Note that the ground truth label yi is unobservable, and
the observable noisy label ŷi is of certain probability to be
incorrect. The classification model maps each input xi to a
C-dimensional logits using a deep neural network model NΘ

and then feeds the logits into a softmax function to produce
pi of the conditional probability of each class.

pi = softmax(NΘ(xi)) =
eNΘ(xi)∑C

c=1 e
(NΘ(xi))c

. (1)

Fig. 2: We train ResNet34 [45] on CIFAR-10 dataset with 60%
symmetric label noise using cross-entropy loss. Left: The train
and test accuracy vs. the number of training epochs. Right: The
gradient coefficient pi − ŷi of clean and mislabeled samples
vs. the number of training epochs.

Θ denotes the parameters of the DNNs and (NΘ(xi))c denotes
the c-th entry of logits NΘ(xi). Traditionally, the model NΘ

is trained via the cross-entropy (CE) loss to measure how well
the model fits the training samples.

Lce(D̂,Θ) = − 1

N

N∑
i=1

{`ce}i = − 1

N

N∑
i=1

ŷT
i log(pi). (2)

B. Memorization Procedure of CE under Noisy Labels

When trained with noisy labels, the overparameterized
DNNs have been observed to first fit the training data with
clean labels during an early learning stage, before eventually
memorizing the examples with wrong labels [12]. Reflected
on training and test accuracy in Figure 2, the model achieves
maximum test accuracy before achieving the highest training
accuracy. During training, the model starts by learning to
predict the true labels for correctly labeled training samples.
Thus it can predict correct labels for clean test data. However,
with the increasing number of training epochs, the model
begins making incorrect predictions as it memorizes the misla-
beled samples. In addition to the empirical observations, recent
study [46] has theoretically proven such an early learning
phenomenon also occurs in a simple linear model.

C. Gradient Analysis of CE

To further explain why the model memorizes noisy labels
eventually, we drive the gradient of cross entropy loss with
respect to Θ as follows:

∇Lce(D̂,Θ) = − 1

N

N∑
i=1

∇NΘ(xi)(pi − ŷi), (3)

where ∇NΘ(xi) is the Jacobian matrix of the neural network
logits for the i-th input with respect to Θ. Assume in clean
training data scenario, pi − yi of true class entry will always
be negative and the rest entries are positive. Therefore, per-
forming stochastic gradient descent increases the probability
of true class and reduces the residual probabilities at other
classes, which ensures the learning to continue on true class.
However, in the noisy label scenario, if c is the true class, but
c-th entry of noisy label (ŷi)c = 0, then the contribution of
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the i-th sample to ∇Lce(Θ) is reversed (i.e. (pi− ŷi)c should
be negative but get positive instead). In the meanwhile, the
entry corresponding to the impostor class c′, is also reversed
because (ŷi)c′ = 1. Thus, for clean samples, the cross-entropy
term pi − ŷi tends to vanish (i.e. closer to zero) after the
early learning stage because pi is close to yi. For mislabeled
samples, the cross-entropy term (pi−ŷi)c is positive, allowing
them to dominate the gradient. The right plot in Figure 2
shows the change of gradient coefficient (pi− ŷi)c in training.
The gradients of clean samples dominate at the beginning, and
then are gradually suppressed by the gradients of mislabeled
samples. Therefore, performing stochastic gradient descent
eventually results in the memorization of whole training data
including mislabeled samples.

IV. METHODOLOGY

We name our framework MixNN as it Mixes each training
sample with its Nearest Neighbours to train the DNNs. A
diagram of our framework is shown in Fig. 3. Generally,
MixNN consists of three parts (boxed with different colors).
In this section, we first explore the representation distributions
in the early learning stage. Then we describe the details
in MixNN, including mixing with nearest neighbours, K-
approximate nearest neighbour search, weight estimation, and

noisy labels correction. We also provide the pseudo-code of
MixNN for reproducing the experiments conveniently.

A. Representation Distributions

In the noisy label scenario, the training data consist of clean
samples and mislabeled samples. The goal of MixNN is to
prevent the model from memorizing mislabeled samples while
continually learning from clean samples. To study whether the
learned representations are corrupted due to label noise, we
plot the t-SNE graph [47] of learned representations (i.e. the
embeddings from penultimate layer) in the early learning stage
in Fig. 3 Part 1. As we can see, the learned representations
of majority clean samples still congregate in their true classes,
while the representations of mislabeled samples disperse in all
classes. For clear illustration, we zoom in a random region in
frog (pink) class and display the samples in the right as an ex-
ample. In this region, we observe that most of the frog images
have learned correct representations, only a few samples from
other classes have learned ‘corrupted’ representations (e.g.
the ship image shouldn’t have a fog representation). Besides,
most of the mislabeled samples in frog class are also frog
images though attached wrong labels from other classes. In
our experiments, we find that 88.96% and 82.8% mislabeled
samples’ representations still congregate in their true class for
CIFAR-10 with 40% and 60% label noise respectively.
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This observation motivates us to consider whether we can
refer the correct information from the mislabeled samples’
nearest neighbours. To achieve our goal, we generate a new
training set where each sample is mixed with its K nearest
neighours. Ideally, the correct image features are most likely
to be preserved while the negative influence of noisy labels
can be mitigated, yields achieving robustness to label noise.

B. Mixing with Nearest Neighbors

Our main idea is to use the correct knowledge from near-
est neighbours to mitigate the detrimental impact of noisy
labels. For each training sample xi in a mini-batch, we
generate a synthetic training sample x̃i by convex linearly
combining it with its K nearest neighbours. We denote K
nearest neighbours of a training sample (xi, ŷi) as ΦK(xi) =
{(x̄k

i , ȳ
k
i )}Kk=1 = {(x̄1

i , ȳ
1
i ), (x̄2

i , ȳ
2
i ), . . . , (x̄K

i , ȳ
K
i )}. Hence,

we define the image of a synthetic training sample as

x̃i = λixi +

K∑
k=1

βk
i x̄

k
i ,

K∑
k=1

βk
i = 1− λi, (4)

where λi is a dynamic scalar value denoting the weight of
original training sample. βk

i denotes the weight of k-th nearest
neighbour. We have λi+

∑K
k=1 β

k
i = 1 to ensure the synthetic

training sample still follows the same distribution of original
sample after normalization. Similarly, we calculate the new
label ỹi of the new sample by

ỹi = λiŷi +

K∑
k=1

βk
i ȳ

k
i ,

K∑
k=1

βk
i = 1− λi. (5)

We then train our model with the synthetic training set D̃ =
{(x̃i, ỹi)}Ni=1. Based on D̃, we use the cross-entropy loss as
the measure of how well the model fits the D̃. We denote

p̃i = softmax(NΘ(x̃i)) =
eNΘ(x̃i)∑C

c=1 e
(NΘ(x̃i))c

. (6)

Thus, our new loss becomes

L(D̃,Θ) = − 1

N

N∑
i=1

ỹT
i log(p̃i)

= − 1

N

N∑
i=1

(λiŷi +

K∑
k=1

βk
i ȳ

k
i )T log(p̃i)

= − 1

N

N∑
i=1

λiŷ
T
i log(p̃i)

− 1

N

N∑
i=1

(

K∑
k=1

βk
i ȳ

k
i )T log(p̃i). (7)

Compared to CE loss in Eq. (2), the new loss is more resistant
to noisy labels. In Eq. (7), the first term is similar to the CE
loss, except it is weighted by λi. The target in the second
term is generated by disparate distributions from K nearest
neighbours. It makes the prediction p̃i of mixed sample hard
to overfit the noisy label ŷi, resulting in mitigating the impact
of noisy labels on training DNNs.

C. Approximate Nearest Neighbour Search

In our method, we search the K-Nearest Neighbors (KNN)
for each training sample based on the learned representation.
Assume the learned representation of a training sample is a
query vector. A naive approach to performing exact KNN
search is to directly compute the distances (e.g. Euclidean
distance and Cosine distance) between the query and every
element in the training set. Hence, the complexity of the naive
approach is O(dN), where N is the size of training set and d
is the dimension of representation vector.

Previous study [48] has demonstrated that exact KNN search
solutions may offer a substantial search speedup only in the
case of relatively low dimentional data (e.g. d < 20) due
to “curse of dimensionality”. For instance, the complexity
of KNN search in KD-tree [49] is O(2d log(N)) which is
exponential to the dimension of representations. In our case
d can be large. For example, the dimension of representation
in penultimate layer for ResNet34 [45] is 512. Therefore, it is
inefficient to directly calcuate the exact KNN.

To overcome this problem, a concept of Approximate Near-
est Neighbours Search (ANNS) [48] was proposed, which
relaxes the condition of the exact search by allowing a small
number of errors. The quality of an inexact search is defined as
the ratio between the number of found true nearest neighbours
and K. In this paper, we adopt the Hierarchical Navigable
Small World (HNSW) graph [50] as our search index. It is a
fully graph based incremental ANNS structure that can offer
a superior logarithmic complexity scaling. The search index
in HNSW is a multi-layered structure where each layer is a
proximity graph. Each node in the graph corresponds to one
of the representations. A nearest neighbour search in HNSW
adopts a “zooming-in” style. It starts at an entry point node in
the uppermost layer and recursively performs a greedy graph
traversal in each layer until it reaches a local minimum in the
bottommost one. The maximum number of connections per
element in all layers can be made a constant, thus allowing a
logarithmic complexity scaling of routing in a navigable small
world graph. In this paper, we use Euclidean distance as the
measure of similarity and the overall search complexity scaling
is O(log(N)). When K = 4, the original exact KNN search
costs 5.25 millisecond per sample in our experiment. When
using HWSW, the search time is reduced to 0.034 millisecond
per sample, which is quite efficient.

D. Weight Estimation

In mixing functions Eq. (4) and Eq. (5), the weight λi
indicates how confidently we can trust the original sample,
whereas β1

i , ..., β
K
i indicates how much knowledge is referred

from these nearest neighbours. Ideally, we want to preserve
correct information from the clean samples while dampening
the wrong information from the mislabeled samples. In other
words, the weights should be able to indicate the ‘probability’
of a training sample being correctly labeled or not.

Due to the early learning phenomenon, the samples with
small-loss values are more likely to be correctly labeled [30].
Therefore, existing sample selection methods [30], [33] select
the clean samples according to the magnitude of loss values. In
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Fig. 4: Train on CIFAR-10 with 40% and 80% label noise after 10 epochs with cross-entropy loss. Plots (a) and (c): The
ground truth normalized loss distribution. Plots (b) and (d): The pdf of mixture model and two components after fitting a
two-component GMM to per-sample loss distribution.

this paper, we investigate the per-sample loss distribution and
find that there is a separation between the loss distribution of
correctly labeled samples and loss distribution of mislabeled
samples. As shown in Fig. 4 (a) and (c), the normalized loss
values of the clean samples are in expectation smaller than
the mislabeled ones. Even in the case of extreme label noise
(e.g. 80% labels are incorrect), their loss distributions can be
differentiated. To estimate the probability of a sample being
clean, we introduce a two-component Gaussian Mixture Model
(GMM) [13] to fit the per-sample loss distribution as shown
in Fig. 4 (b) and (d). The probability density function (pdf)
of GMM with M components on the per sample loss value `
can be defined as

P (`) =

M∑
m=1

πmG(` | µm, σ
2
m),

M∑
m=1

πm = 1, (8)

where πm is the coefficient for the linear convex combination
of each individual pdf G(` | µm, σ

2
m). In our case, we use an

Expectation-Maximization (EM) algorithm to estimate the πm,
µm and σ2

m. Therefore, we obtain the probability of a sample
being clean or mislabeled through the posterior probability:

P (m | `) =
P (m)P (` | m)

P (`)
=

πmG(` | µm, σ
2
m)∑M

m=1 πmG(` | µm, σ2
m)

(9)

where m = 0(1) indicate correct (wrong) labels. Note that we
always calculate the cross-entropy loss to estimate the clean
probability for all samples after every epoch. But we use our
loss defined in Eq. (7) for training the model which contains
multiple loss terms to deal with label noise.

While mislabeled samples benefit from combining with
clean ones, clean samples are contaminated by mislabeled
ones, whose training objective is incorrectly modified. The
goal of mixing strategy in Eq. (4) and Eq. (5) is to use
the dynamic weights to reduce the contribution of mislabeled
samples when they are combined with correctly labeled ones.
We denote the per sample loss value of xi as `(xi). Thus the
dynamic weights are calculated by

λi =
P (m = 0 | `(xi))

P (m = 0 | `(xi)) +
∑K

k=1 P (m = 0 | `(x̄k
i ))

, (10)

βk
i =

P (m = 0 | `(x̄k
i ))

P (m = 0 | `(xi)) +
∑K

k=1 P (m = 0 | `(x̄k
i ))

. (11)

We then use the above weights to guide the generation of
synthetic training sample (x̃i, ỹi). Consider K = 1, there are
totally four mixing cases: clean-clean, clean-wrong, wrong-
clean, and wrong-wrong. By using dynamic weights, it largely
avoids generating the confusing input to the network in clean-
wrong and wrong-clean cases, while retaining the strengths for
clean-clean and wrong-wrong combinations. More discussion
on these four cases is in Section V.

E. Noisy Labels Correction

Despite that the synthetic training samples set D̃ =
{(x̃i, ỹi)}Ni=1 is better than directly using given noisy training
dataset D̂ = {(xi, ŷi)}Ni=1. Nevertheless, using the noisy
labels ŷi in Eq. (5) and Eq. (7) may be less effective as
ŷi is likely to be incorrect, especially when the noise rate
is extremely high. Therefore, we need a better estimation
of ground truth label yi. In Fig. 2, we observe that most
predictions in early learning stage are correct. Based on
this observation, we propose an exponential moving average
strategy to gradually estimate the soft target ti by using the
noisy label ŷi and model prediction pi. We update ti in each
epoch E by

ti =

{
ŷi if E < Es

αti + (1− α)pi if E ≥ Es
(12)

where Es is the epoch that starts performing label correction
and 0 ≤ α < 1 is the momentum. In this paper, we fix
Es = 60 and α = 0.9 by default. We then replace the
noisy label ŷi in Eq. (5) and Eq. (7) with the estimated soft
target ti. Consequently, using a better ti facilitate the model
to memorize more correctly labeled samples and to generate
a better new mixed label ỹ. The correction accuracy will be
discussed in Section VI-F. Overall, put all parts together, our
algorithm is described in Algorithm 1.

V. DISCUSSION AND LIMITATION

To explain how MixNN works, we discuss the possible cases
when mixing with one nearest neighbour (K = 1). We provide
an example to illustrate each case in Fig. 5. The synthetic
samples (x̃i, ỹi) are generated by the following four ways.
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Algorithm 1: MixNN
Input: Networks NΘ with parameters Θ, training set

D̂, number of nearest neighbors K, batch size
B, learning rate η, number of total training
epochs Emax, Es = 60 momentum α = 0.9;

1 Θ = Warmup(D̂,Θ,Lce); // warmup with
cross-entropy loss.

2 Initialize the target ti = ŷi for all samples in D̂;
3 for e = 1, 2, . . . , Emax do
4 P (m = 0 | `ce(xi)) = GMM (D̂, `ce,Θ);

// fit GMM to per-sample loss
distibution.

5 Obtain K Approximate Nearest Neighbors
ΦK(xi) = {(x̄k

i , ȳ
k
i )}Kk=1 for each xi by using

HNSW;

6 Shuffle D̂ into |D̂|B mini-batches ;

7 for n = 1, 2, . . . , |D̂|B do
8 Fetch n-th mini-batch D̂n from D̂ ;
9 Obtain pi for each sample in D̂n by Eq. (1);

10 if e ≥ Es then
11 Update

ti = αti +(1−α)pi for all sample in D̂n;

12 Estimate the weights λi, β1
i , ..., β

K
i for each

sample in D̂n by Eq. (10) and Eq. (11).;
13 Generate D̃n = {(x̃i, ỹi)}Bi=1 by Eq. (4), Eq.

(5) and ΦK(xi);
14 Obtain p̃i for each sample in D̃n by Eq. (6);
15 Calculate the loss

L(D̃n,Θ) = − 1
B

∑B
i=1 λit

T
i log(p̃i)−

1
B

∑B
i=1(

∑K
k=1 β

k
i ȳ

k
i )T log(p̃i);

16 Update Θ = Θ− η∇L(D̃n,Θ) ;

17 Output Θ.

Case 1: Both (xi, ŷi) and its nearest neighbour (x̄1
i , ȳi

1)
are clean samples. Based on the analysis of representation
distributions in the early learning phase, both xi and x̄1

i are
most likely to be the images from the same class. In this case,
the new mixed input is a convex linear combination of two
similar images, i.e., x̃i = λixi +β1

i x̄
1
i . And its corresponding

label is ỹi = λiŷi + β1
i ȳ

1
i . Since ŷi = ȳ1

i and λi + β1
i = 1,

then the mixed label ỹi = ŷi = ȳ1
i . Therefore, the new sample

(x̃i, ỹi) is similar to the sample after applying augmentation
strategy [51] which encourages the model to behave linearly
in-between training samples, resulting in reducing the number
of undesirable oscillations when predicting hard samples. The
DNNs trained with such samples will be better calibrated [52].
In other words, the prediction softmax scores are much better
indicators of the actual likelihood of predictions, which avoids
producing the overconfident wrong predictions and improves
the estimation of dynamic weights in Section IV-D.
Case 2: (xi, ŷi) is clean sample and its nearest neighbour
(x̄1

i , ȳi
1) is mislabeled sample. Similarly, the new mixed input

is most likely to be a combination of two images from the same
class, while their labels are inconsistent. In Fig. 5 case 2, the

Case 1: clean—clean

Case 2 and Case 3: clean—wrong

Case 4: wrong—wrong

[0 1 0 0] [0 1 0 0]

0.5 ⨉ 0.5 ⨉+ = 
[0 1 0 0]

[0 1 0 0] [1 0 0 0]

0.5 ⨉ 0.5 ⨉+ = 
[0.5 0.5 0 0]

[0 1 0 0] [1 0 0 0]

0.8 ⨉ 0.2 ⨉+ = 
[0.2 0.8 0 0]

simply averaging

dynamic weight estimation

[1 0 0 0] [1 0 0 0]

0.5 ⨉ 0.5 ⨉+ = 
[1 0 0 0]

without noisy label correction

[0.3 0.4 0.2 0.1] [0.3 0.6 0 0.1]

0.5 ⨉ 0.5 ⨉+ = 

[0.3 0.5 0.1 0.1]

with noisy label correction

Fig. 5: An example for illustrating the different cases in
MixNN. Here, we use the one-hot label vector and each entry
indicates four different classes (i.e. dog, cat, fox and monkey).

mixed label becomes an ambiguous target if simply averaging
the samples. However, with estimated dynamic weights, the
mixed label is determined and correct. Our method to generate
the mixed label is similar to label smoothing [11] which scales
and translates the original noisy label ŷi to (1− γ)ŷi + γ/C,
but preserves the label with maximal probability when γ < 1.
Different from the label smoothing that uses the fixed uniform
distribution to scale the noisy labels, our approach adopts the
dynamic weights, where λ, β1, . . . , βK are learned from data,
to adaptively adjust the mixed label for better performance.
Case 3: (xi, ŷi) is mislabeled sample and its nearest neigh-
bour (x̄1

i , ȳi
1) is clean sample. This case is similar to case 2,

so we do not further discuss it.
Case 4: Both (xi, ŷi) and its nearest neighbour (x̄1

i , ȳi
1) are

mislabeled samples. In this case, the mixed input is combined
with two images from the same class, but their labels are both
incorrect. Thus the mixed sample is not promised to improve
the generalization capacity as shown in Fig. 5. However, the
noisy labels are very likely to be corrected after using label
correction (more discussions in Section VI-F)). Therefore, the
mixed label can be a reasonable target compared to the original
noisy one.
Limitations of MixNN Suppose we have encountered the
worst case, i.e., the label correction fails, the new mixed
input is a mixture of two images from different classes, and
their labels are both incorrect and inconsistent. It is the main
limitation of our approach as this case definitely degrades the
performance. However, this worst case rarely occurs. In our
experiments, we observe that the worst case occurs in only
4.3% of the training data when trained on CIFAR-10 with
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60% label noise.

VI. EXPERIMENTS

In this section, we first test the efficacy of the proposed
method on two benchmark datasets with simulated label noise.
Then we evaluate the performance of MixNN on the real-world
datasets which contain more sophisticated label noise. We also
provide ablation study and qualitative results to investigate the
effect of different components. We conduct several empirical
analyses to gain a better understanding of our approach,
including learning stability, gradient analysis, the choice of
K in mixing function, effectiveness of label correction, and
feature representations. All experiments are implemented in
Pytorch and run on a single NVIDIA A100 GPU.

A. Effectiveness on Simulated Label Noise

We conduct the experiments with simulated label noise on
the following two datasets.
• CIFAR-10 [53] consists of 60,000 natural colour images,

each of size 32 × 32 pixels. These images are classified
into 1 of 10 classes, such as dog, cat, automobile, or ship.
The training set contains 50,000 images, while the test set
contains 10,000 images.

• CIFAR-100 [53] is similar with CIFAR-10, except it has
100 classes containing 600 images each. The 100 classes
are grouped into 20 superclasses. Each image comes
with a “fine” label (the class to which it belongs) and
a “coarse” label (the superclass to which it belongs).

Label Noise Simulation Given CIFAR-10 and CIFAR-100
are initially clean, we follow the way in [23] to corrupt
these two benchmarks manually by label transition matrix Q,
where Qij = Pr[ŷ = j | y = i] denotes the probability
that noisy label ŷ is flipped from clean label y. Generally,
the matrix Q has two representative label noise models. (1)
Symmetric noise [17] is generated by uniformly flipping labels
in each class to one of the other class labels with probability
ε. (2) Asymmetric noise [23] is a simulation of fine-grained
classification with noisy labels in the real world, where the
annotators are more likely to make mistakes only within very
similar classes. Fig. 6 shows an example of label transition
matrix Q for above two label noise models. In this paper, the
asymmetric noisy labels are generated by flipping truck →
automobile, bird → airplane, deer → horse and cat ↔ dog
for CIFAR-10. For CIFAR-100, the noise flips each class into
the next, circularly within super-classes. Data Preprocessing
We apply normalization and regular image augmentations (i.e.
random crop and horizontal flip) on training data. The crop
size for CIFAR-10 and CIFAR-100 remains 32 after padding
with 4 pixels.
Network and Optimizer We use ResNet34 [45] for both
datasets, and train them using SGD with a momentum of 0.9, a
weight decay of 0.001, and a batch size of 128. The networks
are trained for 300 epochs. We use the cosine annealing
learning rate [54] where the maximum number of epoch for
each period is 10, the maximum and minimum learning rate is
set to 0.02 and 0.001 respectively. We warm up our networks
10 epochs for CIFAR-10 and 30 epochs for CIFAR-100 with

60%
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60%

60%
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10% 10% 10% 10%

10% 10% 10% 10%

10%
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10% 10%
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100%
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0%

0%
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0%
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0%

0%0%

Symmetric-40% Asymmetric-40%

Fig. 6: Example of label transition matrix Q (taking 5 classes
and noise ratio ε = 0.4 as an example).

cross-entropy loss. We do not perform early stopping [55]
since we don’t assume the presence of clean validation data.
All test accuracies are recorded from the last epoch of training.
The reason that we train the model 300 epochs is to fully
evaluate whether the model will memorize the mislabeled
samples, avoiding the interference caused by early stopping [4]
(i.e. the model may not start memorizing mislabeled samples
when the number of training epochs is small). We set K = 1
since we find that a larger K worsens the performance. More
discussions on choice of K can be found in Section VI-E.
Baselines We compare our method to the following baselines
from different categories. (1) CE directly uses the standard
cross-entropy loss to train the DNNs on noisy training data. (2)
F-correction [23] and Bootstrap [27] belong to loss correction
category. (3) GCE [19], SCE [20], NFL+MAE [22], and
NCE+RCE [22] belong to robust loss function category. (4)
Joint Optim [24], PENCIL [26], RoG+D2L [56], M-correction
[57], SEAL [58] and LRT [59] belong to label correction
category. (4) Decoupling [31], Co-teaching [30], MentorNet
[29] and Iterative-CV [60] belong to sample selection category.
(4) O2U-net [9], NLNL [8], DAC [7], Crust [61] and ODD
[62] belong to noisy pruning category. (5) SELF [38] belongs
to semi-supervised learning category.
Results on CIFAR-10 and CIFAR-100 Table I shows the
classification test accuracies of our approach on CIFAR-
10 and CIFAR-100 with different levels of symmetric and
asymmetric label noise. As we can see, MixNN achieves
the highest accuracy in most cases, especially in challenging
ones. For example, on CIFAR-10 with 80% symmetric label
noise, MixNN outperforms the best state-of-the-art method
(74.84% of DAC) by more than 11%. In the hardest case (i.e.
CIFAR-100 with 80% symmetric label noise), we observe that
most existing methods achieve relatively low test accuracies
and PENCIL even fails to converge. However, MixNN still
achieves the best accuracy up to 48.81%. Note that on CIFAR-
10/CIFAR-100 with 20% symmetric label noise, NLNL and
DAC obtain superior performance and even outperform our
approach. However, these two methods are more complex and
perform multiple training stages for different purposes. For
example, NLNL performs three training stages including a)
Division of training data into either clean or noisy data with a
DNN model. b) Training initialized DNN with clean data from
the first stage and then updating noisy data’s label following
the output of DNN trained with clean data. c) Clean data and
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TABLE I: Test Accuracy (%) on CIFAR-10 and CIFAR-100 with different ratios of symmetric and asymmetric label noise.
We compare with existing methods under the same backbone ResNet34 [45]. The average accuracy and standard deviation of
3 random runs are reported. symm/asymm represent symmetric/asymmetric label noise respectively. Bold indicates the best
results. - indicates the result is not reported.

Model
Dataset CIFAR-10 CIFAR-100

Noise type symm asymm symm asymm
Method/Noise ratio 20% 40% 60% 80% 40% 20% 40% 60% 80% 40%

ResNet34

CE 86.98 ± 0.12 81.88 ± 0.29 74.14 ± 0.56 53.82 ± 1.04 80.11 ± 1.44 58.72 ± 0.26 48.20 ± 0.65 37.41 ± 0.94 18.10 ± 0.82 42.74 ± 0.61
F-correction [23] 87.99 ± 0.36 83.25 ± 0.38 74.96 ± 0.65 54.64 ± 0.44 83.55 ± 0.58 39.19 ± 2.61 31.05 ± 1.44 19.12 ± 1.95 8.99 ± 0.58 34.44 ± 1.93
Bootstrap [27] 86.23 ± 0.23 82.23 ± 0.37 75.12 ± 0.56 54.12 ± 1.32 81.21 ± 1.47 58.27 ± 0.21 47.66 ± 0.55 34.68 ± 1.10 21.64 ± 0.97 45.12 ± 0.57
GCE [19] 89.83 ± 0.20 87.13 ± 0.22 82.54 ± 0.23 64.07 ± 1.38 76.74 ± 0.61 66.81 ± 0.42 61.77 ± 0.24 53.16 ± 0.78 29.16 ± 0.74 47.22 ± 1.15
SCE [20] 89.83 ± 0.32 87.13 ± 0.26 82.81 ± 0.61 68.12 ± 0.81 82.51 ± 0.45 70.38 ± 0.13 62.27 ± 0.22 54.82 ± 0.57 25.91 ± 0.44 49.32 ± 0.87
NFL+MAE [22] - 83.81 ± 0.06 76.36 ± 0.31 45.23 ± 0.52 77.16 ± 0.10 - 58.18 ± 0.08 46.10 ± 0.50 24.78 ± 0.82 43.51 ± 0.42
NCE+RCE [22] - 86.02 ± 0.09 79.78 ± 0.50 52.71 ± 1.90 79.59 ± 0.40 - 59.48 ± 0.56 47.12 ± 0.62 25.80 ± 1.12 46.79 ± 0.96
Joint Optim [24] 92.25 90.79 86.87 69.16 - 58.15 54.81 47.94 17.18 -
PENCIL [26] - - - - 91.01 - 69.12 ± 0.62 57.79 ± 3.86 fail 63.61 ± 0.23
RoG+D2L [56] - 87.00 78.00 - - - 64.90 40.60 - -
M-correction [57] - 92.30 86.10 74.10 - - 70.10 59.50 39.50 -
MentorNet [29] 92.00 91.20 74.20 60.00 - 73.50 68.50 61.20 35.50 -
O2U-net [9] - 90.30 - 43.40 - - 69.20 - 39.40 -
NLNL [8] 94.23 92.43 88.32 - 89.86 71.52 66.39 56.51 - 45.70
DAC [7] 92.91 90.71 86.30 74.84 - 73.55 66.92 57.17 32.16 -
SELF [38] - 91.13 - 63.59 - - 66.71 - 35.56 -
MixNN (Ours) 93.91 ± 0.12 92.89 ± 0.02 91.66 ± 0.07 86.08 ± 1.01 90.25 ± 0.76 74.81 ± 0.14 72.97 ± 0.14 67.56 ± 0.17 48.81 ± 0.06 68.18 ± 0.11

label-updated noisy data are both used for training initialized
DNN in the final stage. In contrast, our method conducts an
end-to-end learning manner which is much simpler than NLNL
and also achieves excellent performance. In summary, MixNN
shows a consistently strong performance across all datasets
with different types and ratios of simulated label noise.

B. Effectiveness on Real-world Label Noise

We use the following datasets to evaluate the performance
of our approach under the real-world noisy labels settings.

• Clothing1M [63] contains 1 million images of clothing
obtained from online shopping websites with 14 classes,
such as T-shirt, sweater, and so on. The labels are
generated by using the surrounding texts of the images
that are provided by the sellers and thus contain many
wrong labels. The overall accuracy of the labels is around
61.54%, with some pairs of classes frequently confused
with each other (e.g. knitwear and sweater). This dataset
also contains 50k, 14k, and 10k of clean data for training,
validation, and testing, respectively. Note that we do
not use the 50k clean data in our training process. We
report the classification accuracy on the test set when the
performance on the validation set is optimal.

• Webvision [64] is a large web images dataset that contains
more than 2.4 millions of images crawled from the
Flickr and Google Images Search. The label noise level
of Webvision is estimated at 20%. Following [60], we
compare the baseline methods on the first 50 classes
of Google image subset. We not only test the trained
model on the human-annotated WebVision validation set,
but also test the model on ILSVRC12 validation set to
evaluate generalization capability.

Data Preprocessing We apply normalization and regular data
augmentations (i.e. random crop and horizontal flip) on the
training sets. Since real-world images are of different sizes,
we perform the cropping consistent with the existing work
[60]. Specifically, 224 × 224 for Clothing1M (after resizing
to 256 × 256), and 227 × 227 for Webvision.

Network and Optimizer We use the ResNet-50 [45] pre-
trained on ImageNet for Clothing1M. We train the model
with batch size 64. The optimization is done using SGD
with a momentum of 0.9, and weight decay of 0.001. We
use the same cosine annealing learning rate as CIFAR-10
except the minimum learning rate is set to 0.0001 and the
total epoch is 200. For each epoch, we randomly sample
2000 mini-batches from the training data ensuring that the
classes of the noisy labels are balanced. For Webvision, we
use InceptionResNetV2 [65] as the backbone architecture. All
other optimization details are the same as for CIFAR-10,
except for the weight decay (0.0005), the batch size (32) and
maximum learning rate (0.01).
Results on Clothing1M and Webvision Table II shows the
results on Clothing1M dataset. MixNN consistently outper-
forms other baselines, slightly superior to Joint-Optim. Table
III compares MixNN to state-of-the-art methods trained on
the Webvision and evaluated on both the WebVision and Im-
ageNet ILSVRC12 validation sets. On WebVision validation
set, MixNN produces superior results in terms of top 1 and top
5 accuracies, demonstrating our method is effective on datasets
containing real-world label noise. Furthermore, MixNN out-
performs other methods in the ILSVRC12 validation set,
demonstrating MixNN’s great generalization capability.

C. Ablation Study

We study the effect of removing different components to
provide insights into what makes MixNN successful. The
results are in Table IV. First, we remove the dynamic weight
estimation in MixNN. Instead, we average (AVG) the selected
samples or use random (RDM) weights from a Beta distri-
bution in mixing function. We observe that merely averaging
the selected samples does not perform well in all noisy cases,
especially when the noise ratio is large. In comparison, using
random weights may result in a surprising performance. For
instance, it achieves excellent performance in CIFAR-100
with 40% asymmetric label noise. Since asymmetric label
noise is concentrated inside each class, the estimated weights
may fail to capture the clean probability of difficult samples,
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TABLE II: Comparison with state-of-the-art methods trained on Clothing1M. Results of other methods are taken from original
papers. All methods use a ResNet-50 architecture pretrained on ImageNet.

Methods CE F-correction [23] GCE [19] Co-teaching [30] SEAL [58] SCE [20] LRT [59] Joint-Optim [24] MixNN
Test accuracy 69.21 69.84 69.75 70.15 70.63 71.02 71.74 72.16 72.39

TABLE III: Comparison with state-of-the-art methods trained on (mini) WebVision. Results of other baseline methods are
taken from original papers. All methods use an InceptionResNetV2 architecture.

F-correction [23] Decoupling [31] D2L [28] MentorNet [29] Co-teaching [30] Iterative-CV [60] Crust [61] ODD [62] MixNN

WebVision top1 61.12 62.54 62.68 63.00 63.58 65.24 72.40 74.60 75.39
top5 82.68 84.74 84.00 81.40 85.20 85.34 89.56 90.60 90.71

ILSVRC12 top1 57.36 58.26 57.80 57.80 61.48 61.60 67.36 66.70 70.54
top5 82.36 82.26 81.36 79.92 84.70 84.98 87.84 86.30 90.31

TABLE IV: Ablation study results in terms of test accuracy (%) on CIFAR-10 and CIFAR-100.

Dataset CIFAR-10 CIFAR-100
Noise type symm asymm symm asymm
Noise ratio 40% 80% 40% 40% 80% 40%

MixNN 92.89 ± 0.02 86.08 ± 1.01 90.25 ± 0.76 72.97 ± 0.14 48.81 ± 0.06 68.18 ± 0.11
MixNN w/o weight estimation (AVG) 88.79 ± 0.33 58.53 ± 0.15 82.27 ± 0.10 64.21 ± 0.19 27.91 ± 0.31 59.73 ± 0.21
MixNN w/o weight estimation (RDM) 91.92 ± 0.09 78.72 ± 0.13 89.91 ± 0.27 71.08 ± 0.25 41.14 ± 0.18 72.98 ± 0.47
MixNN w/o label correction 91.73 ± 0.01 74.31 ± 0.49 88.73 ± 0.11 66.09 ± 0.50 30.18 ± 0.52 63.66 ± 0.43
MixNN w/o K nearest neighbours 92.19 ± 0.04 76.58 ± 0.25 88.69 ± 0.17 71.46 ± 0.08 42.02 ± 0.48 68.61 ± 0.16
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Fig. 7: For plots (a) and (b), we train MixNN on CIFAR-10 with 60% symmetric label noise. Plot (a) shows the training and
test accuracy vs. the number of epochs. Plot (b) shows the gradient coefficient vs. the number of epochs. Plot (c) shows the
effect of different K on performance.

forcing the mixing function to use an average way. However,
using the random weights is likely to appropriately assign the
weights for the challenging samples, reducing the impact of
asymmetric label noise. We also remove the label correction to
see how it affects the performance. Without label correction,
the performance suffers, especially when the noise ratio is
high. Further, we investigate the performance of MixNN when
using random samples instead of using K nearest neighbours.
We observe that the performance is marginally poorer in the
low ratio of label noise. However, when the training data
contains high ratios of noisy labels, the performance suffers
a large decline, demonstrating the benefit of using K nearest
neighbours in MixNN.

D. Learning Stability and Gradient Analysis

In section III, we have demonstrated the failure of CE
when trained DNNs with noisy labels. The training accuracy
constantly increases indicates the DNNs eventually overfit the

noisy labels, resulting in a drop of accuracy on the clean test
set. To verify the denoising effect of MixNN, we show its
learning stability by plotting the training and test accuracy vs.
the number of epochs in Fig. 7(a) on the CIFAR-10 with 60%
label noise. We observe that the training accuracy stabilizes at
around 40% after 60 epochs. It means the DNNs only fit the
clean samples, resulting in no drop in test accuracy.

We further investigate the gradient coefficient of clean and
mislabeled samples when using MixNN. In Fig. 7(b). We
can observe the differences compared to the CE gradient
coefficient in Fig. 2. The gradient of mislabeled samples is
close to 0, letting the gradient of clean samples dominates
the whole gradient throughout the training. Therefore, MixNN
forces the model to learn from clean samples rather than
mislabeled samples. In addition, we notice that there is an
obvious gradient drop for clean samples when starting using
noisy label correction (Note that we start label correction from
epoch 60), which demonstrates the label correction effectively
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Fig. 8: Confusion matrix of corrected labels w.r.t clean labels on CIFAR-10.

TABLE V: Correction accuracy (%) on CIFAR-10 and CIFAR-100 with various levels of label noise injected to training set.

Dataset CIFAR-10 CIFAR-100
Noise type symm asymm symm asymm
Noise ratio 20% 40% 60% 80% 40% 20% 40% 60% 80% 40%

Correction accuracy (%) 96.78 95.25 92.89 86.77 91.81 90.71 84.86 74.93 52.45 72.40

suppresses gradient inversion as mentioned in Section III-C.

E. Choice of K

The mixing functions Eq. 4 and Eq. 5 contain a parameter
K to control the number of nearest neighbours mixed with
original sample. To study the effect of K on our approach, we
test different K on CIFAR-10. As shown in Fig. 7(c), MixNN
achieves the worst performance as it reduces to regular training
(i.e. CE) when K = 0. However, the performance of MixNN
starts decreasing with the continuing increase of K. To explore
whether the performance drop is due to dynamic weight esti-
mation, we add another set of experiments where we simply
use averaging strategy (abbreviated as MixAVG). We observe
that MixAVG has a similar tendency on performance with
the increase of K. Therefore, dynamic weight estimation is
not the reason causing performance drop. We then conjecture
that the reason is the over-mixture of input images. Since the
resulting image is the mixture of K images, larger K leads to a
more complex input. To avoid the influence of noisy labels, we
conduct another set of experiments that use MixAVG on clean
training data. We observe a similar performance drop when
increasing K. Therefore, a reasonable K can suit our needs,
while a large K makes it more difficult for the model to learn
from complicated inputs, resulting in performance degradation.

F. Effectiveness of Noisy Label Correction

Recall that we perform noisy label correction in Section
IV-E. Since the estimated target ti is calculated by an expo-
nential moving average between the given noisy labels and
model predictions, our method is able to gradually correct the
noisy labels. The correction accuracy can be calculated by
1
N

∑N
i 1{argmax yi = argmax ti}, where yi is the ground

truth label of training sample xi. We evaluate the correction
accuracy on CIFAR-10 and CIFAR-100 with different levels
of label noise. As we can see the results in Table V, our

method successfully corrects a huge amount of wrong labels
and obtains high correction accuracy in all cases. We also
plot the confusion matrix of corrected labels w.r.t the clean
labels on CIFAR-10 with 40% and 80% symmetric label noise
and 40% asymmetric label noise in Figure 8. Our approach
corrects the noisy labels impressively well for all classes under
different level of label noise. We also observe that class dog
and class cat are the most similar classes in CIFAR-10, which
greatly increases the difficulty in the label correction process.
As a result, our mixing strategy is more reliable to obtain the
accurate mixed labels using the corrected soft labels,.

G. Feature Representations

We further investigate the representations learned by our
approach compared to that learned by traditional cross entropy
loss and SCE [20]. We extract the high-dimensional repre-
sentations at the penultimate layer and project them to a 2D
embedding by using t-SNE [47]. The projected representations
are illustrated in Fig. 9 for 20%, 40%, 60% and 80% sym-
metric label noise respectively. Under all settings, the feature
representations learned by our approach are of significantly
better quality than that of CE and SCE with more separated
and clearly bounded clusters. We find that SCE always keeps
the feature representations of mislabeled samples in their true
classes, the same as what CE does in the early learning stage,
which prevents the model from memorizing them. However,
the boundary formed by the SCE becomes increasingly blurred
as the noise ratio rises (see ε = 0.8 case). In contrast, our
approach gradually corrects the noisy labels to clean labels,
resulting in most of the feature representations in different
classes are corrected.

VII. CONCLUSION

In this paper, we explore the representation distribution
in the early learning phase and propose MixNN for robust
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(a) CE (symm ε = 0.2) (b) CE (symm ε = 0.4) (c) CE (symm ε = 0.6) (d) CE (symm ε = 0.8)

(e) SCE [20] (symm ε = 0.2) (f) SCE [20] (symm ε = 0.4) (g) SCE [20] (symm ε = 0.6) (h) SCE [20] (symm ε = 0.8)

(i) MixNN (symm ε = 0.2) (j) MixNN (symm ε = 0.4) (k) MixNN (symm ε = 0.6) (l) MixNN (symm ε = 0.8)

Fig. 9: t-SNE plots of feature representations learned by CE, SCE, and our proposed method MixNN on CIFAR-10 with
different ratios of label noise. Different colours represent the different classes in CIFAR-10.

learning with noisy labels. Our approach mitigates the negative
influence of noisy labels by training with the synthetic samples
obtained by mixing the original training samples with their
K nearest neighbours. The mixing procedure is dynamically
adjusted by the learned Gaussian mixture model on per-
sample loss distribution. We also propose a strategy that
gradually corrects the noisy labels by using an exponential
moving average on the given labels and model predictions.
Through extensive experiments across multiple datasets with
simulated and real-world label noise, we demonstrate that
MixNN consistently exhibits substantial performance improve-
ments compared to state-of-the-art methods. Importantly, the
proposed approach works with any classifier “out-of-the-box”
without any changes to architecture or training procedure.
We are interested in adapting MixNN to other domains such
as natural language process (NLP) and object detection, and
believe MixNN is a promising algorithm for training robust
DNNs against noisy labels. We hope that our work will
trigger interest in the design of new approaches that provide
robustness to label noise in real-world applications.
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