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ABSTRACT
The labels crawled from web services (e.g. querying images from
search engines and collecting tags from social media images) are
often prone to noise, and the presence of such label noise degrades
the classification performance of the resulting deep neural network
(DNN) models. In this paper, we propose an ensemble model consist-
ing of two networks to prevent the model from memorizing noisy
labels. Within our model, we have one network generate an anchor-
ing label from its prediction on a weakly-augmented image. Mean-
while, we force its peer network, taking the strongly-augmented
version of the same image as input, to generate prediction close to
the anchoring label for knowledge distillation. By observing the
loss distribution, we use a mixture model to dynamically estimate
the clean probability of each training sample and generate a confi-
dence clean set. Then we train both networks simultaneously by
the clean set to minimize our loss function which contains unsu-
pervised matching loss (i.e., measure the consistency of the two
networks) and supervised classification loss (i.e. measure the clas-
sification performance). We theoretically analyze the gradient of
our loss function to show that it implicitly prevents memorization
of the wrong labels. Experiments on two simulated benchmarks
and one real-world dataset demonstrate that our approach achieves
substantial improvements over the state-of-the-art methods.
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• Computing methodologies → Ensemble methods; Supervised
learning by classification; Neural networks; Mixture modeling; Un-
certainty quantification.
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1 INTRODUCTION
Deep Neural Networks (DNNs) have become the par excellence
approach to deal with a variety of computer vision tasks [19, 24].
However, the superior performance comes with the cost of requir-
ing a large-scale training dataset with high-quality annotations.
It is difficult to attain such strong supervision information due to
the high cost of the manually labeling process. Hence, we turn to
web services to obtain large-scale training data with labels, such as
querying online search engines [22], collecting online websites im-
ages with surrounding texts [42], downloading social media images
with tags [29] or crowdsourcing [45]. However, these approaches
usually inevitably introduce label noise. For example, [42] collects
1 million training images from online shopping websites and gener-
ates their labels from surrounding texts with 38.5% estimated label
noise. Previous studies [2, 46] demonstrate DNN can memorize
noisy labels easily and generalize poorly on clean test data. There-
fore, mitigating the effects of noisy labels has attracted considerable
attention especially when the training data are from web resource.

To handle noisy labels, most approaches focus on estimating
the noise transition matrix [11, 31, 41] and correcting the label
according to model prediction [28, 33, 36, 43]. Another promising
direction of study is based on sample selection, which trains two
networks simultaneously by using small-loss instances [5, 13, 40,
44]. For instance, Decoupling [30] and Co-teaching+ [44] introduce
the “Disagreement" strategy to keep the two networks diverged to
achieve better ensemble effects. However, the samples selected by
“Disagreement" strategy are not guaranteed to have correct labels
[40], resulting in only a small portion of clean samples being utilized
in the training process. Co-teaching [13] and JoCoR [40] aim to
reduce the divergence between two different networks so that the
number of clean labels utilized in each mini-batch increases. In
the beginning, two networks with different learning abilities filter
out different types of error. However, with the increasing training
epoch number, two networks gradually converge to a consensus
and even make the wrong predictions consistently. Besides, these
methods rely on a known noise rate to accurately select the small-
loss samples in each mini-batch, which is usually impractical.

To address the above concerns, it is crucial to keep the balance
between divergence and consistency of two networks through the
whole training procedure. In this paper, we propose an ensemble
model for robust learning with noisy labels. Specifically, we use
weak (e.g. using only crop-and-flip) and strong (e.g. using RandAug-
ment [8]) augmentations for two networks respectively to avoid the
consensus of their predictions. The stronger augmentation results
in disparate prediction compared to the weak one, which guaran-
tees the better ensemble effect due to the divergence between two
networks. Aside from the supervised classification loss, we propose
an unsupervised matching loss to keep the consistency of predic-
tions from two networks without using noisy labels. According
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to the observation of loss distribution in early-learning stage, we
propose a method based on a mixture model to dynamically se-
lect the confident clean samples without the need to estimate noise
rates. In this way, the influence of mislabeled samples in the process
of model learning is mitigated, and our framework is inherently
noise-tolerant. The main contributions are summarized as follows:

• We propose an framework with two networks fed with differ-
ent augmented inputs to achieve the better ensemble effect,
wherein an unsupervised matching loss is used to mitigate
the influence of noisy labels and improve the generalization.

• We analyze the gradient of our loss function and show that
the gradient term derived from unsupervised matching loss
corrects the gradient of the cross-entropy loss.

• Different from the existing approaches that require estimat-
ing noise rates, we fit a mixture model to loss distribution to
select the high-confident clean samples for network parame-
ter update, making our method applicable in real life.

• We conduct extensive experiments on both simulated and
real-world noisy datasets. Experiments show that our ap-
proach significantly advances state-of-the-art results. We
study the effect of data augmentations and provide an abla-
tion study to examine the influence of different components.

2 RELATEDWORK
Numerous methods have been proposed for robust classification
with noisy labels. Herein, we briefly review the relevant existing
approaches.
Curriculum learning. Inspired from human cognition, Curricu-
lum learning (CL) [3] proposes to start from easy samples and go
through harder samples to improve convergence and generalization.
In the noisy label scenario, easy (hard) concepts are associated with
clean (noisy) samples. Based on CL, [34] leverages an additional
validation set to adaptively assign weights to noisy samples for less
loss contribution in every iteration.
Sample selection. Another set of emerging methods aim to select
the clean labels out of the noisy ones to guide the training. Previous
work [2] empirically demonstrates the early-learning phenomenon
that DNNs tend to learn clean labels before memorizing noisy la-
bels during training, which justifies that instances with small-loss
values are more likely to be clean instances. Based on this obser-
vation, [26] proposes a curriculum loss that chooses samples with
small-loss values for loss calculation. MentorNet [17] pre-trains a
mentor network for selecting small-loss instances to guide the train-
ing of the student network. Nevertheless, similar to Self-learning
approach, MentorNet inherits the same inferiority of accumulated
error caused by the sample-selection bias.
Two classifiers with Disagreement and Agreement. Inspired
by Co-training [4], Co-teaching [13] symmetrically trains two net-
works by selecting small-loss instances in a mini-batch for updating
the parameters. These two networks could filter different types of
errors brought by noisy labels since they have different learning
abilities. When the error from noisy data flows into the peer net-
work, it will attenuate this error due to its robustness [13]. However,
two networks converge to a consensus gradually with the increase
of epochs. To tackle this issue, Decoupling [30] and Co-teaching+

[44] introduce the “Update by Disagreement" strategy which con-
ducts updates only on selected instances, where there is a prediction
disagreement between two classifiers. Through this, the decision
of “when to update" depends on a disagreement between two net-
works instead of depending on the noisy labels. As a result, it would
reduce the dependency on noisy labels as well as keep two net-
works divergent. However, as noisy labels are spread across the
whole space of examples, there may be very few clean labels in
the disagreement area. Thus, JoCoR [40] suggests jointly training
two networks with the instances that have prediction agreement
between two networks. However, the two networks in JoCoR are
also prone to converge to a consensus and even make the same
wrong predictions when datasets are under high noise ratio.
Other methods. Some approaches focus on creating noise-tolerant
loss functions [10, 39, 48]. Other methods attempt to correct the
loss [1, 15, 28, 31, 33, 35, 36, 38]. Many approaches [9, 20, 36] have
been proposed to combat noisy labels through semi-supervised
learning. These approaches [16, 23, 25] introduce the regularization
term to avoid memorization of noisy labels.

Our proposed approach is related to sample selection using two
networks. However, it is also fundamentally different from existing
methods. Instead of only using classification loss, we propose an
extra matching loss to reduce the effect of noisy labels. We feed
different augmented images to two networks respectively, yielding
a stronger generalization ability. Beyond heuristic design, we pro-
vide the gradient analysis to explain how our loss function avoids
memorization of the mislabeled samples. Different from selecting
small-loss samples by using a fixed ratio, we use a mixture model
to dynamically select the high-confident clean samples.

3 METHODOLOGY
3.1 Background
Our work aims to develop an algorithm to learn a classifier that
achieves robust performance on the test set even the provided
training data contains noisy labels. Consider the 𝐶-class classi-
fication problem in noisy label scenario, we have a training set
𝐷 = {(𝒙𝑖 , �̂�𝑖 )}𝑁𝑖=1, where 𝒙𝑖 is an input and �̂�𝑖 ∈ {0, 1}𝐶 is one-hot
vector corresponding to 𝒙𝑖 . In the noisy label scenario, true label𝒚𝑖
is not observable in practice. The classification model maps each
input 𝒙𝑖 to a 𝐶-dimensional logits using a DNN model MΘ and
then feeds the logits into a softmax function to produce 𝒑𝑖 of the
conditional probability of each class.

𝒑𝑖 = softmax(MΘ (𝒙𝑖 )) =
𝑒MΘ (𝒙𝑖 )∑𝐶

𝑐=1 𝑒
(MΘ (𝒙𝑖 ))𝑐

. (1)

Θ denotes the parameters of the DNN and (MΘ (𝒙𝑖 ))𝑐 denotes
the 𝑐-th entry of logitsMΘ (𝒙𝑖 ). Then the DNN is trained via the
cross-entropy loss to measure how the model fits the training set
𝐷 .

ℓ𝑐𝑒 (𝐷,Θ) = − 1
𝑁

𝑁∑︁
𝑖=1

�̂�𝑇𝑖 log(𝒑𝑖 ). (2)

However, as noisy label �̂�𝑖 is likely to be wrong, the model gradually
memorizes the training samples with wrong labels when optimizing
ℓ𝑐𝑒 . Existing studies [2, 46] have observed that DNNs fully overfit
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Figure 1: Our approach trains two networks (MΘ1 and MΘ2 ) simultaneously. A weakly-augmented version of an image 𝒙 (top)
is fed into the model MΘ1 to obtain its prediction (blue box). We convert the prediction to a one-hot hard pseudo-label as an
anchoring label (yellow box). Then, we compute second model’s prediction (green box) for a strongly-augmented version of the
same image (bottom). The models are trained on total loss (i.e. the linear convex combination of the unsupervised matching loss
and classification loss) to make the prediction on the strongly-augmented version match the anchoring label. For parameter
update, we fit the Gaussian Mixture Model (GMM) to loss distribution for distinguishing the clean samples, which ensuring
error caused by noisy labels would not be accumulated.

to noisy labels during training, causing the classification perfor-
mance degradation. In addition, [21, 23] have observed and also
theoretically proved that when trained on noisy labels, DNNs first
fit the training data with clean labels during an early learning phase,
before eventually memorizing the training data with wrong labels.
This early learning phenomenon also reflects on the loss distribu-
tion which motivates us to develop an approach to select clean
samples in Section 3.4.

3.2 Our approach: Co-matching
A diagram of our approach is shown in Figure 1. We name our
approach Co-matching as it Co-trains two deep networks by min-
imizing the loss contains an unsupervised matching loss term.
We denote the two deep networks in our model as MΘ1 and MΘ2
with parameters Θ1 and Θ2 respectively. Thus softmax(MΘ1 (𝒙𝑖 ))
and softmax(MΘ2 (𝒙𝑖 )) are the softmax probabilities for input 𝒙𝑖
produced byMΘ1 andMΘ2 . For the model inputs, we perform two
types of augmentation for each network: weak and strong, denoted
by 𝛼 (·) and A(·) respectively. We will describe the forms of aug-
mentation used for A(·) and 𝛼 (·) in section 3.5. For notation sim-
plicity, we denote 𝒑Θ1

𝑖
and 𝒑Θ2

𝑖
as abbreviations for predictions, i.e.,

softmax(MΘ1 (𝛼 (𝒙𝑖 ))) and softmax(MΘ2 (A(𝒙𝑖 ))) respectively.
As the DNN model can easily overfit the noisy labels when

trained with standard cross-entropy loss, resulting in poor classi-
fication performance. Our basic idea is to reduce the dependence
of loss function on noisy labels. Therefore, the loss function in
Co-matching exclusively consists of two loss terms: a supervised
loss ℓ𝑐 for classification task and an unsupervised matching loss
ℓ𝑚 for augmentation anchoring (i.e. encourage the two models to
output the consistent predictions on different augmented data). So
our total loss on dataset 𝐷 is calculated as follows:

L(𝐷,Θ1,Θ2) = (1 − 𝜆)ℓ𝑐 (𝐷,Θ1,Θ2) + 𝜆ℓ𝑚 (𝒙,Θ1,Θ2), (3)

where 𝜆 ∈ [0, 1] is a fixed scalar hyperparameter controlling the
importance weight of the two loss terms. Since there are correctly-
labeled samples remaining in noisy training data, our classification

loss ℓ𝑐 is the traditional cross-entropy loss over two models.

ℓ𝑐 (𝐷,Θ1,Θ2) = ℓ𝑐𝑒 (𝐷,Θ1) + ℓ𝑐𝑒 (𝐷,Θ2)

= − 1
𝑁

𝑁∑︁
𝑖=1

�̂�𝑇𝑖 log(𝒑Θ1
𝑖

) − 1
𝑁

𝑁∑︁
𝑖=1

�̂�𝑇𝑖 log(𝒑Θ2
𝑖

)

= − 1
𝑁

𝑁∑︁
𝑖=1

�̂�𝑇𝑖 log(𝒑Θ1
𝑖

⊙ 𝒑Θ2
𝑖

) . (4)

Compared to cross-entropy loss in Eq. (2), our classification loss
term ℓ𝑐 is more resistant to noisy labels. On the one hand, assume
�̂�𝑖 is a correct label for 𝒙𝑖 , when minimizing ℓ𝑐 , both 𝒑Θ1

𝑖
and 𝒑Θ2

𝑖
are updated toward �̂�𝑖 . To gain the optimal result of Hadamard
product between 𝒑Θ1

𝑖
and 𝒑Θ2

𝑖
, two models are required to produce

more confident and consistent predictions close to �̂�𝑖 . On the other
hand, assume �̂�𝑖 is a wrong label for 𝒙𝑖 . Weakly augmented input
can result in prediction 𝒑Θ1

𝑖
close to �̂�𝑖 , while strongly augmented

input generates disparate prediction 𝒑Θ2
𝑖

compare to the weak one.
It makes the result of Hadamard product between 𝒑Θ1

𝑖
and 𝒑Θ2

𝑖
more difficult to reach the wrong label �̂�𝑖 , resulting in mitigating
the effect of overfitting noisy labels in both networks. Besides, it also
explains that Co-matching can always keep two networks diverged
throughout the whole training to achieve better ensemble effects.
Nevertheless, solely keeping the divergence of two networks may
not promote the learning ability to select clean samples, which is
the main drawback of Co-teaching+ [44]. In addition, under high
level of label noise (i.e. most of the nois labels �̂�𝑖 are wrong), it is
difficult for the supervised loss ℓ𝑐 to learn a robust classifier. This
motivates us to develop an extra loss term that does not require
using noisy label �̂�𝑖 but still improves the generalization ability.

Our basic idea is to use the model’s prediction for a weakly
augmented input as the target label for the strongly augmented
version of the same image. This maximizes the consistency of the
two networks resulting in helping the model find a wider minimum
and provides better generalization performance. In Co-matching,



we compute an anchor (or anchoring label) for each sample by the
prediction of model MΘ1 . To obtain an anchoring label of given
image 𝒙𝑖 , we get the predicted class distribution from model MΘ1

given a weakly-augmented version of the image: 𝒑Θ1
𝑖

and 𝒑Θ1
𝑖

=

[(𝑝Θ1
𝑖

)1, (𝑝Θ1
𝑖

)2, · · · , (𝑝Θ1
𝑖

)𝐶 ]. Then, we use hard pseudo-labeling
way to get 𝒕Θ1

𝑖
as the anchoring label.

(𝑡Θ1
𝑖

) 𝑗 =
{
1 if 𝑗 = argmax

𝑐
(𝑝Θ1
𝑖

)𝑐
0 otherwise

(5)

The use of hard pseudo-labeling has the similar function to en-
tropy maximization [12], where the model’s predictions are encour-
aged to be low-entropy (i.e., high-confidence). Besides, the hard
pseudo-labeling is likely to reduce the negative effect of knowledge
distillation caused by noisy labels in early learning stage. The an-
choring label is used as the target probability for the prediction
of a strongly-augmented version of same image in MΘ2 . How-
ever, not all samples are suitable to generate anchoring labels, as
hard pseudo-label of low-confident noisy samples may introduce
unstable inconsistency. Thus, we develop an approach to select
high-confident clean samples in Section 3.4.

We use the standard cross-entropy loss rather thanmean squared
error or Jensen-Shannon Divergence as it maintains stability and
simplifies implementation. Thus, the unsupervised matching loss is

ℓ𝑚 (𝒙,Θ1,Θ2) = − 1
𝑁

𝑁∑︁
𝑖=1

𝒕Θ1
𝑖

log(𝒑Θ2
𝑖

) . (6)

Therefore, by minimizing the total loss in Eq. (3), the model consis-
tently improves the generalization performance under different lev-
els of label noise. Under low-level label noise (i.e., 20%), supervised
classification loss ℓ𝑐 (𝐷,Θ1,Θ2) takes the lead. Co-matching tends
to learn from the most correctly-labeled samples. Under high-level
label noise (i.e., 80%), unsupervised matching loss ℓ𝑚 (𝒙,Θ1,Θ2)
takes the lead such that Co-matching inclines to maximize the con-
sistency of the networks to improves the generalization without
requiring noisy labels.

3.3 Theoretical Analysis on Loss Function
We explain how our loss function can effectively prevent the model
memorizing the mislabeled samples by analyzing the gradient. We
first explain how the standard cross-entropy loss in Eq. (2) memo-
rizes samples with wrong labels. The gradient of cross-entropy loss
with respect to Θ equals

∇ℓ𝑐𝑒 (𝐷,Θ) = − 1
𝑁

𝑁∑︁
𝑖=1

∇MΘ (𝒙𝑖 )
(
𝒑𝑖 − �̂�𝑖

)
, (7)

where ∇MΘ (𝒙𝑖 ) is the Jacobian matrix of the DNN logits for the
𝑖-th input with respect to Θ. In clean training data scenario, 𝒑𝑖 − �̂�𝑖
of true class entry will always be negative and rest entries are posi-
tive. Therefore, performing stochastic gradient descent increases
the probability of true class and reduces the residual probabilities
at other entries. However, in noisy-label scenario, if 𝑐 is the true
class, but 𝑐-th entry of noisy label (𝑦𝑖 )𝑐 = 0, then the contribution
of the 𝑖-th sample to ∇ℓ𝑐𝑒 (𝐷,Θ) is reversed (i.e. (𝑝𝑖 − 𝑦𝑖 )𝑐 should
be negative but get positive instead). In the meanwhile, the entry
corresponding to the impostor class 𝑐 ′, is also reversed because

Figure 2: Train on CIFAR-10 with 40% label noise after 10
epochs with cross-entropy loss. Left: The ground truth nor-
malized loss distribution. Right: The pdf of mixture model
and two components after fitting a two component GMM to
loss distribution.

(𝑦𝑖 )𝑐′ = 1. Therefore, performing stochastic gradient descent even-
tually results in memorization of mislabeled samples.

However, our loss function can counteract this influence. Simi-
larly, we derive the gradient of simplified L(𝐷,Θ1,Θ2) (𝜆 = 0.5)
with respect to Θ1 and Θ2 equals

∇L(𝐷,Θ1,Θ2) = − 1
𝑁

𝑁∑︁
𝑖=1

∇MΘ1,Θ2 (𝒙𝑖 )
(𝒑Θ1

𝑖
+ 𝒑Θ2

𝑖

2
− �̂�𝑖+

𝒑Θ2
𝑖

− 𝒕Θ1
𝑖

2

)
= − 1

𝑁

𝑁∑︁
𝑖=1

∇MΘ1,Θ2 (𝒙𝑖 )
(
𝒑Θ2
𝑖

− �̂�𝑖 +
𝒑Θ1
𝑖

− 𝒕Θ1
𝑖

2

)
(8)

where ∇MΘ1,Θ2 (𝒙𝑖 ) is the Jacobian matrix of the DNNs logits for
the 𝑖-th input with respect to Θ1 and Θ2. If 𝑐 is the true class, since
𝒕Θ1
𝑖

is calculated by hard pseudo-labeling in Eq. (5), then the 𝑐-
th entry of 𝒑Θ1

𝑖
− 𝒕Θ1

𝑖
is negative. Compared to the gradient of

cross-entropy loss, we have an additional negative term (𝒑Θ1
𝑖

−
𝒕Θ1
𝑖

)/2 to adjust the gradient coefficients, which is useful both for
correctly-labeled and mislabeled samples. For correctly-labeled
samples, the first term 𝒑Θ2

𝑖
− �̂�𝑖 vanishes after the early-learning

stage, allowing the mislabeled samples to dominate the gradient.
Adding the negative term (𝒑Θ1

𝑖
− 𝒕Θ1

𝑖
)/2 counteracts this effect

by ensuring that the magnitudes of the coefficients on correctly-
labeled samples remains large. For mislabeled samples, the 𝑐-th
entry of first term (𝒑Θ2

𝑖
−�̂�𝑖 )𝑐 is positive because (�̂�𝑖 )𝑐 = 0. Adding

the negative term ((𝒑Θ1
𝑖

− 𝒕Θ1
𝑖

)/2)𝑐 dampens the coefficients on
these mislabeled samples, thereby diminishing their effect on the
gradient. Thus, our loss function boosts the gradient of correctly-
labeled samples and neutralizes the gradient of mislabeled samples,
which prevents the second model memorizing the noisy labels.

3.4 Clean Sample Selection
Since DNNs learn clean patterns before memorizing noisy labels
[2], small-loss instances are more likely to be the ones that are
correctly labeled [13]. Training the model only using correctly-
labeled instances in each mini-batch data would be resistant to



noisy labels. This approach is named as “small-loss” trick and is
widely used in existing works [13, 40, 44]. However, it requires
a given noise rate or estimating the noise rate using additional
steps. In this paper, we observe that the correctly-labeled samples
can be distinguished from the loss distribution alone. To estimate
the probability of being correctly-labeled sample, we introduce a
two component Gaussian Mixture Model (GMM) [32] to fit the
normalized loss distribution as shown in Figure 2. The probability
density function (pdf) of GMM with 𝐾 components on the loss ℓ
can be defined as

𝑃 (ℓ) =
𝐾∑︁
𝑘=1

𝜋𝑘N(ℓ | 𝜇𝑘 , 𝜎2𝑘 ),
𝐾∑︁
𝑘=1

𝜋𝑘 = 1, (9)

where 𝜋𝑘 are the mixing coefficient for the linear convex combi-
nation of each individual pdf N(ℓ | 𝜇𝑘 , 𝜎2𝑘 ). In our case, we use an
Expectation-Maximization (EM) algorithm to estimate the 𝜋𝑘 , 𝜇𝑘
and 𝜎2

𝑘
. Therefore, we can obtain the probability of a sample being

correctly-labeled or mislabeled through the posterior probability:

𝑃 (𝑘 | ℓ) = 𝑃 (𝑘)𝑃 (ℓ | 𝑘)
𝑃 (ℓ) =

𝜋𝑘N(ℓ | 𝜇𝑘 , 𝜎2𝑘 )∑𝐾
𝑘=1 𝜋𝑘N(ℓ | 𝜇𝑘 , 𝜎2𝑘 )

(10)

where 𝑘 = 0(1) indicate correct (wrong) labels. Note that we always
calculate the cross-entropy loss to estimate the clean probability for
all samples after every epoch. But we use our loss defined in Eq. (3)
for training the model which contains other loss term to deal with
label noise. Then we select the clean samples in 𝑛-th mini-batch
𝐷𝑛 for updating the network parameters as follows

�̂�𝑛 = {(𝒙𝑖 , �̂�𝑖 ) | 𝑃 (𝑘 = 0 | ℓ𝑐𝑒 (𝒙𝑖 )) > 0.5 and (𝒙𝑖 , �̂�𝑖 ) ∈ 𝐷𝑛}. (11)

After obtaining the confident clean samples set �̂�𝑛 in mini-batch
𝑛, we calculate the loss for these examples to further conduct back
propagation.

L(�̂�𝑛,Θ1,Θ2) = − 1
|�̂�𝑛 |

∑︁
(𝒙𝑖 ,�̂�𝑖 ) ∈�̂�𝑛

�̂�𝑇𝑖 log(𝒑Θ1
𝑖

⊙ 𝒑Θ2
𝑖

)+

𝒕Θ1
𝑖

log(𝒑Θ2
𝑖

). (12)

Therefore, our approach effectively select the clean samples without
a need to estimate the noise rate. Put all these together, our algo-
rithm is described in Algorithm 1. We also compare Co-matching
to other existing approaches in Appendix A.3.

3.5 Augmentations in Co-matching
Our framework leverages two kinds of augmentations: “weak” and
“strong”. In our experiments, weak augmentation is a standard crop-
and-flip augmentation strategy. Specifically, we randomly crop the
images and flip them horizontally with a probability of 50% on all
datasets. As for “strong” augmentation, we adopt RandAugment
[8], which is based on AutoAugment [7]. AutoAugment learns an
augmentation strategy based on transformations from the Python
Imaging Libraries 1 using reinforcement learning. Given a collection
of transformations (e.g., color inversion, contrast adjustment, trans-
lation, etc.), RandAugment randomly selects 𝑀 transformations
for each sample in a mini-batch. As originally proposed, RandAug-
ment uses a single fixed global magnitude that controls the severity
1https://www.pythonware.com/products/pil/

Algorithm 1: Co-matching
Input: two networks MΘ1 and MΘ2 with parameters

Θ = {Θ1,Θ2 }, weak augmentation 𝛼 ( ·) , strong
augmentation A(·) , importance weight 𝜆, training set 𝐷 ,
batch size 𝐵, learning rate 𝜂, number of training epochs𝑇 ;

1 Θ1,Θ2 = Warmup(𝐷,Θ1,Θ1) ; // train with cross-entropy

loss 10 epochs for warmup.

2 for 𝑡 = 1, 2, . . . ,𝑇 do
3 𝑃 (𝑘 = 0 | ℓ𝑐𝑒 (𝒙𝑖 )) = GMM (𝐷, ℓ𝑐𝑒 ,Θ1,Θ2) ; // model loss

distibution to obtain clean probability for each
sample.

4 Shuffle 𝐷 into |𝐷 |
𝐵

mini-batches ;
5 for 𝑛 = 1, 2, . . . , |𝐷 |

𝐵
do

6 Fetch 𝑛-th mini-batch 𝐷𝑛 from 𝐷 ;
7 Calculate the prediction 𝒑Θ1 = softmax(MΘ1 (𝛼 (𝒙))) ,

∀𝒙 ∈ 𝐷𝑛 ;
8 Calculate the prediction 𝒑Θ2 = softmax(MΘ2 (A(𝒙))) ,

∀𝒙 ∈ 𝐷𝑛 ;
9 Calculate the anchoring label 𝒕Θ1 by Eq. (5) ;

10 Obtain confident clean samples by Eq. (11) ;
11 Calculate the loss by Eq. (12) ;
12 Update Θ = Θ − 𝜂∇L(�̂�𝑛,Θ1,Θ2) ;

13 Output Θ1 and Θ2.

of all distortions [8]. Instead of optimizing the hyperparameter
magnitude by using grid search, we find that sampling a random
magnitude from a pre-defined range at each training step (instead
of using a fixed global value) works better for learning with noisy
labels. The implementation details are in Section 4.3.

4 EXPERIMENTS
4.1 Experimental Settings
We evaluate our method on two benchmarks with simulated label
noise, CIFAR-10 and CIFAR-100 [18], and one real-world dataset,
Clothing1M [42]. Clothing1M consists of 1 million training images
collected from online shopping websites with noisy labels gener-
ated from surrounding texts. CIFAR-10 and CIFAR-100 are initially
clean. Following [31], we corrupt the datasets by label transition
matrix 𝑄 , where 𝑄𝑖 𝑗 = Pr[𝑦 = 𝑗 |𝑦 = 𝑖] given that noisy label 𝑦 is
flipped from clean label𝑦. The matrix Q has two representative label
noise models: (1) Symmetric flipping [37] is generated by uniformly
flipping the label to one of the other class label; (2) Asymmetric
flipping [31] is a simulation of fine-grained classification with noisy
labels in the real world, where the mistakes only occur within very
similar classes. More details are described in Appendix A.1.
Networks and optimizer. For CIFAR-10 and CIFAR-100, we use
a 7-layer network architecture for fair comparison with [40]. The
Adam optimizer (momentum=0.9) is used with an initial learning
rate of 0.001, and the batch size is set to 128. We run 200 epochs
in total and linearly decay learning rate to zero from 80 to 200
epochs. As for Clothing1M, we accept ResNet18 [14] with ImageNet
pretrained weights and use Adam optimizer (momentum=0.9) with
a batch size of 64. We run 20 epochs in total and set learning rate to
8 × 10−4, 5 × 10−4 and 5 × 10−5 for 5, 5 and 10 epochs respectively.



Table 1: Average test accuracy (%) on CIFAR-10 and CIFAR-100 over the last 10 epochs. The results (mean ± std) are reported
over 5 random runs and best results are in bold.

Same Category Methods Other Category Methods

Noise ratio/Method Standard Decoupling Co-teaching Co-teaching+ JoCoR GCE SL APL Co-Matching (Ours)

CIFAR-10

Symmetric-20% 69.57 ± 0.20 69.55 ± 0.20 78.07 ± 0.24 78.66 ± 0.20 85.69 ± 0.06 89.93 ± 0.08 89.13 ± 0.16 85.54 ± 0.51 90.07 ± 0.16
Symmetric-50% 42.48 ± 0.35 41.44 ± 0.46 71.54 ± 0.17 57.13 ± 0.46 79.32 ± 0.37 81.38 ± 0.06 79.76 ± 0.20 80.66 ± 0.13 87.63 ± 0.22
Symmetric-80% 15.79 ± 0.37 15.64 ± 0.42 27.71 ± 4.39 24.13 ± 5.54 25.97 ± 3.11 44.33 ± 0.15 53.62 ± 0.37 44.19 ± 4.40 58.86 ± 1.54
Asymmetric-40% 69.36 ± 0.23 69.46 ± 0.08 73.75 ± 0.34 69.03 ± 0.30 76.38 ± 0.32 74.17 ± 0.45 74.39 ± 0.75 78.37 ± 0.02 82.32 ± 0.57

CIFAR-100

Symmetric-20% 35.46 ± 0.25 33.21 ± 0.22 43.71 ± 0.20 49.15 ± 0.24 52.43 ± 0.20 57.83 ± 0.73 47.60 ± 0.34 59.92 ± 0.48 60.47 ± 0.29
Symmetric-50% 16.87 ± 0.13 15.03 ± 0.33 34.30 ± 0.39 39.08 ± 0.73 42.73 ± 0.96 49.24 ± 0.30 31.66 ± 1.43 52.26 ± 0.37 53.81 ± 0.56
Symmetric-80% 4.08 ± 0.21 3.80 ± 0.01 14.95 ± 0.15 15.00 ± 0.42 14.41 ± 0.60 32.18 ± 0.27 13.51 ± 0.82 26.28 ± 2.05 35.23 ± 0.82
Asymmetric-40% 27.23 ± 0.45 26.25 ± 0.27 28.27 ± 0.22 30.45 ± 0.15 31.52 ± 0.31 40.02 ± 0.35 37.25 ± 0.16 42.25 ± 0.30 39.14 ± 0.37
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Figure 3: Results on CIFAR-10 dataset. Top: test accuracy(%) vs. epochs; bottom: label precision(%) vs. epochs.
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Figure 4: Results on CIFAR-100 dataset. Top: test accuracy(%) vs. epochs; bottom: label precision(%) vs. epochs.

Metrics. To measure the performance, we use the test accuracy, i.e.,
test accuracy = (# of correct predictions) / (# of test dataset). Higher

test accuracy means that the algorithm is more robust to the label
noise. Following the [13, 40], we also calculate the label precision



in each mini-batch, i.e., label precision = (# of clean labels) / (# of
all selected labels). Specifically, we attain the clean set by GMM in
each mini-batch, and then calculate the ratio of clean samples in
the clean set. Intuitively, an algorithm with higher label precision
is also more robust to the label noise [13, 40]. However, we find
that the higher label precision is not necessarily lead to higher test
accuracy with extreme label noise in Co-matching, we will explore
this phenomenon in Section 4.2.
Baselines.We compare Co-matching with four close-related meth-
ods, including Decoupling [30], Co-teaching [13], Co-teaching+
[44], JoCoR [40] and three methods from different category, includ-
ing GCE [48], SL [39] and APL [27]. We implement all methods
with same environment and default parameters by Pytorch. Note
that all compared algorithms do not use extra techniques such as
mixup [47] to improve the performance. All results are reported
over five random runs. The error bar for standard deviation in each
figure has been highlighted as shade.

4.2 Comparison with the State-of-the-Arts
Results on simulated datasets CIFAR-10 and CIFAR-100We
report the average test accuracy over the last 10 epochs of all meth-
ods in Table 1. Co-matching outperforms other methods by a large
margin for almost all noise rates across all datasets.We also find that
Co-matching is more effective when the noise rates are extremely
high. For instance, on CIFAR-10 with Symmetric-80% label noise,
Co-matching outperform the best baseline method by more than
5.24%. Within the methods from same category, JoCoR performs
better than other baselines in all noise cases except the hardest
Symmetric-80% case. It means JoCoR has reduced to Co-teaching
in function and suffers the same problem which the two networks
converge to a wrong consensus, resulting in making the wrong pre-
dictions consistently. Note that APL sometimes delivers a relatively
good performance, as it has guaranteed robustness to asymmetric
label noise.

The top rows of Figure 3 and Figure 4 show the test accuracy vs.
epochs of close-related methods on CIFAR-10 and CIFAR-100. With
different levels of symmetric and asymmetric label noise, we can
clearly see the memorization effect of networks. i.e., test accuracy
of Standard first reaches a very high level and then gradually de-
creases due to memorization of noisy labels. Thus, a robust training
approach should alleviate or even stop the decreasing trend in test
accuracy. On this point, the proposed approach Co-matching shows
a clear advantage over other close-related methods, especially in
the later stages of learning with noisy labels. The superior perfor-
mance of Co-matching demonstrates that it prevents memorization
of noisy labels throughout the whole training procedure, which
consistently verifies our gradient analysis in Section 3.3.

We also plot label precision vs. epochs at the bottom row of Fig-
ure 3 and Figure 4. Only Decoupling, Co-teaching, Co-teaching+, Jo-
CoR and Co-matching are considered here, as thesemethods include
sample selection during training. First, we can see Co-matching,
JoCoR and Co-teaching can successfully pick clean instances out in
Symmetric-20 %, Symmetric-50% and Asymmetric-40% cases. Note
that Co-matching not only reaches high label precision in these
three cases but also performs better and better with the increase of

Table 2: Test accuracy (%) on Clothing1Mwith ResNet18. Bold
indicates best performance.

Methods best last

Standard 67.74 66.95
Decoupling 67.71 66.78
Co-teaching 69.05 68.99
Co-teaching+ 67.84 67.68

JoCoR 70.30 69.79
SL 69.22 67.97
GCE 69.59 68.81
APL 69.92 68.84

Co-matching (Ours) 71.16 70.78

epochs. Decoupling and Co-teaching+ fail in selecting clean sam-
ples, because “Disagreement" strategy does not guarantee to select
clean samples, as mentioned in Section 2. However, an interesting
phenomenon is that high label precision does not necessarily lead
to high test accuracy under high-levels of label noise. For example,
in Symmetric-80% case, the label precision of Co-matching is much
lower than Co-teaching and JoCoR, while the test accuracy is higher
than Co-teaching and JoCoR. Similarly, in all noise rates cases on
CIFAR-100, Co-teaching has much higher label precision than Co-
teaching+, while the test accuracy of Co-teaching is lower than
Co-teaching+. The subset of clean samples selected by small-loss
rule may not rich enough to generalize effectively to held-out data,
we believe the samples near the margin with relatively larger loss
contribute more towards improving the model’s generalization.
Results on real-world dataset Clothing1M.As shown in Table 2,
best denotes the epochwhere the validation accuracy is optimal, and
last denotes the test accuracy at the end of training. Co-matching
outperforms the state-of-the-art methods by a large margin on
both best and last, e.g., improving the accuracy from 66.95% to
70.78% over Standard, better than best baseline JoCoR by 0.99%.
This verifies the effectiveness of Co-matching against real-world
label noise.

4.3 Composition of Data Augmentation
We study the impact of data augmentation systematically by consid-
ering several common augmentations. One type of augmentation
involves spatial/geometric transformation, such as cropping, flip-
ping, rotation and cutout. The other type of augmentation involves
appearance transformation, such as color distortion (e.g. brightness
and contrast) and Gaussian blur. Since Clothing1M images are of
different sizes, we always use cropping as a base transformation.
We explore various “weak" augmentation by combining cropping
with other augmentations. As for “strong" augmentation, we use
RandAugment [8], which randomly select𝑀 transformations from
a set S for each sample in a mini-batch. We denote RandAugment
as S(𝑀). In our experiment, S = {Contrast, Equalize, Invert, Ro-
tate, Posterize, Solarize, Color, Brightness, Sharpness, ShearX, ShearY,
Cutout, TranslateX, TranslateY, Gaussian Blur}.

Figure 5 shows the results under composition of transforma-
tions. We observe that using “weak" augmentation for both models
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Figure 5: Test accuracy(%) over various combinations of aug-
mentations on CIFAR-10 with Symmetric-80% label noise.

does not work much better than simple cropping. However, the
performance of Co-matching benefits a lot by using stronger aug-
mentations (e.g. add S(2) and S(3)) on the second networkMΘ2 .
We conclude that in the extreme label noise case, our loss function
requires using stronger augmentation on modelMΘ2 to constantly
achieve its ensemble effect.

4.4 Ablation Study
In this section, we perform an ablation study to analyze the effect
of each component in Co-matching, including the use of two net-
works, the use of joint update, the use of matching loss and the use
of weak and strong augmentations. The experiments are conducted
on CIFAR-10 with two cases: Symmetric-50% and Symmetric-80%.
To verify the effect of using two networks and the use of joint
update, we introduce Standard enhanced by “small-loss” selection
(abbreviated as Standard+), Co-teaching and JoCoR to join the com-
parison. Besides, we simply set 𝜆 = 0 in Eq. (3) to see the influence
of removing the matching loss (abbreviated as Co-matching-).

The results of their test accuracy vs. epochs are shown in Figure
6. In Symmetric-50% case, both Co-teaching and Standard+ keep a
downward tendency after increasing to the highest point, which
indicates they are still prone to memorizing noisy labels even with
“small-loss" update. It also verifies the effect of using two networks
as Co-teaching performs better than Standard+. JoCoR consistently
outperforms Co-teaching, which verifies the conclusion in [40]
that joint-update is more efficient than cross-update. However,
things start to change in Symmetric-80% case. Co-teaching and
Standard+ remain the same trend as these for Symmetric-50% case,
but JoCoR performs unstable and even worse than Co-teaching
and Standard+. This is likely because that, JoCoR uses the Jensen-
Shannon (JS) Divergence to minimize the difference between two
networks, resulting in the over consensus of two networks.

In both noise rates cases, Co-matching consistently outperforms
Co-matching- and other methods, which validates that the use of
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Figure 6: Results of ablation study on CIFAR-10

Figure 7: (a) Test accuracy of existing methods with same
weak and strong augmentations. (b) Test accuracy of Co-
matching with different hyperparameter 𝜆.

matching loss can strongly prevent neural networks from memoriz-
ing noisy labels. To show the effect of weak and strong augmenta-
tions, we evaluate the state-of-art methods with the same augmen-
tation strategy (i.e. weak and strong for each network respectively)
as Co-matching. We conduct the experiments on CIFAR-10 with the
hardest Symmetric-80% label noise. Figure 7 (a) shows the results.
We observe that using weak and strong augmentations may not
promise to improve performance for other methods. Co-teaching+
even performs worse. Figure 7 (b) shows the influence of 𝜆. A larger
𝜆 gets a better accuracy in Symmetric-80% case. More results on
hyperparameter sensitivity can be found in Appendix A.2.

5 CONCLUSION
In this paper, we identify the deficiencies of existing approaches and
introduce a method for deep learning with noisy labels. Our method
uses two networks with different strengths of augmented inputs to
keep divergence and to achieve better ensemble effect. To avoid the
influence of noisy labels, we introduce an unsupervised matching
loss for knowledge distillation. In addition, we fit a mixture model to
sample loss distribution to select the clean samples without the need
of known noise rates. We provide the theoretical analysis on our
loss functions and demonstrate the effectiveness of Co-matching on
both benchmark and real-world datasets. We believe Co-matching
is a promising framework for training robust DNNs against noisy
labels from web services.
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A APPENDIX
A.1 Details of Datasets and Simulated Noise
The information of datasets are described in Table 3. For Cloth-
ing1M, it contains 1 million images of clothing obtained from online
shopping websites with 14 classes: T-shirt, Shirt, Knitwear, Chif-
fon, Sweater, Hoodie, Windbreaker, Jacket, Down Coat, Suit, Shawl,
Dress, Vest, and Underwear. The labels are generated by using the
surrounding texts of the images that are provided by the sellers,
and thus contain many wrong labels. The overall label noise level
of Clothing1M is estimated at 38.46%, with some pairs of classes
frequently confused with each other (e.g. Knitwear and Sweater).
Note that we only use 14k and 10k clean data for validation and
test. The 50k clean training data is not required during the training.
As for simulating label noise, Figure 8 shows an example of noise
transition matrix 𝑄 . As for simulated label noise, specifically, for
CIFAR-10, the asymmetric noisy labels are generated by flipping
truck → automobile, bird → airplane, deer → horse and cat ↔ dog.
For CIFAR-100, the noise flips each class into the next, circularly
within super-classes.

Table 3: Summary of datasets used in the experiments.

# of train # of test # of class input size
CIFAR-10 50,000 10,000 10 32 × 32
CIFAR-100 50,000 10,000 100 32 × 32
Clothing1M 1,000,000 10,000 14 224 × 224
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Figure 8: Example of noise transition matrix 𝑄 (taking 5
classes and noise ratio 0.4 as an example).

A.2 Hyperparameter Sensitivity
Co-matching only has one hyperparameter 𝜆 to control the im-
portance weights of classification loss and matching loss. To tune
the hyperparameter 𝜆 in our loss function Eq. (3), we search it in
[0.05,0.35,0.65,0.95] with a noisy validation set for optimal perfor-
mance due to the reliability of noisy validation set [6].

Figure 9 shows the influence of 𝜆 on CIFAR-10. In the CIFAR-10
with Symmetric-50% noise case, 𝜆 = 0.35 returns the best accuracy.
Larger or smaller 𝜆 hurt the performance. In the CIFAR-10 with
Symmetric-80% noise case, a larger 𝜆 gets a better accuracy, and

Table 4: Comparison of state-of-the-art and related tech-
niques with our approach. In the first column, “cross up-
date": updating parameters in a cross manner instead of
a parallel manner; “joint update": updating the two net-
works parameters jointly. “divergence": keeping two classi-
fiers diverged during the whole training procedure. “aug-
mentation anchoring": encouraging the predictions of a
strongly-augmented image to be close to the predictions from
a weakly-augmented version of the same image. “noise rate”:
need a ground truth noise rate or an estimated noise rate.

Decoupling Co-teaching Co-teaching+ JoCoR Co-matching

cross update × √ √ × ×
joint update × × × √ √

divergence
√ × √ × √

augmentation anchoring × × × × √

noise rate × √ √ √ ×

𝜆 = 0.95 achieves the best performance. It verifies the motivation
of our loss function: under high-levels of label noise, the model is
hard to get enough supervision from noisy labels if we only use
the classification loss, more weights on matching loss is required
to achieve good performance.

Figure 9: Results of Co-matching with different 𝜆 on CIFAR-
10 with 50% and 80% symmetric label noise.

A.3 Comparision with Existing Methods
We compare Co-matching to other existing methods in Table 4.

Table 5: Average test accuracy (%) on CIFAR-10.

Hard pseudo-labeling Soft pseudo-labeling
Symmetric-20% 90.07 ± 0.16 89.81 ± 0.29
Symmetric-80% 58.86 ± 1.54 9.98 ± 0.00

A.4 Hard Pseudo-labeling in Matching Loss
Using hard pseudo-labeling for matching loss helps the model con-
verge. We report the results in Table 5. We find that when the
noise reaches to 80%, the Co-matching does not converge with soft
pseudo-labeling. In order to improve the stability of our approach,
we use hard pseudo-labeling for matching loss in Eq. (5).
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